A Mathematical Introduction to Fluid Mechanics

Tiejun Li

School of Mathematical Sciences, Peking University,
Beijing 100871, P.R. China
Email: tieli@pku.edu.cn

Lect1 Introduction
Lect2 Tensor operations and curvilinear coordinates
Lect3 Derivation of Euler equations
Lect4 Isentropic flow and Bernoulli’s theorem
Lect5 Vortex and Kelvin’s theorem
Lect6 Potential flow
Lect7 Derivation of Navier-Stokes equations
Lect8 Typical models in fluid mechanics
Lect9 Boundary layer theory
Lect10 Projection methods
Lect11 Random vortex methods
Lect12 Mathematical theory of NSE
Lect13 Stability theory
Lect14 Derivation of NSE from Molecular dynamics
Lect15 Characteristics and Riemann invariants
Lect16 Shock and entropy conditions (I)
Lect17 Shock and entropy conditions (II)
Lect18 Piston problem
Lect19 Riemann problem and Glimm’s scheme
Lect20 Difference methods for conservation laws
Lect21 An introduction to non-Newtonian flow
Lect22 Turbulence