Lecture 11 Fast Fourier Transform (FFT)

Weinan E1,2 and Tiejun Li2

1Department of Mathematics,
Princeton University,
weinan@princeton.edu

2School of Mathematical Sciences,
Peking University,
tieli@pku.edu.cn
No.1 Science Building, 1575
Outline

Examples

Fast Fourier Transform

Applications
Signal processing

- Filtering: a polluted signal

- High pass and low pass filter (signal and noise)

- How to obtain the high frequency and low frequency quickly?
Solving PDEs on rectangular mesh

- Solving the Poisson equations

\[-\Delta u = f \text{ in } \Omega\]

\[u = 0 \text{ on } \partial\Omega\]

in the rectangular domain

- After discretization we will obtain the linear system with about \(N^2\) unknowns

\[-\frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{4h^2} = f_{ij}\]

- The FFT would give a fast algorithm to solve the system above with computational efforts \(O(N^2 \log_2 N)\).
Computing convolution (卷积)

- Suppose

\[h(x) = \int_{0}^{2\pi} f(x - y)g(y)\,dy \]

is the convolution of \(f \) and \(g \), where \(f(x), g(x) \in C_{2\pi} \) are period \(2\pi \) functions.

- Take \(x_j = j\delta, j = 0, 1, \ldots, N - 1, \delta = \frac{2\pi}{N} \) and apply simple rectangular discretization

\[h(x_i) \approx \sum_{j=0}^{N-1} f(x_i - x_j)g(x_j) \cdot \delta \quad i = 0, 1, \ldots, N - 1 \]

- Define \(f_i = f(x_i), g_i = g(x_i) \), and let \(f_i \) is period \(N \) respect to the subscript \(i \), define

\[h_i = \sum_{j=0}^{N-1} f_{i-j}g_j \cdot \delta \quad i = 0, 1, \ldots, N - 1 \]

- The direct computation is \(O(N^2) \).
Fast Fourier Transform is one of the top 10 algorithms in 20th century.

But its idea is quite simple, even for a high school student!
Examples

Fast Fourier Transform

Applications
Suppose $f(x)$ is absolutely integrable in $(-\infty, +\infty)$, then the Fourier transform of $f(x)$ is

$$\hat{f}(k) = \int_{-\infty}^{+\infty} f(x)e^{-ikx} dx.$$

Moreover if $f(x)$ is square integrable, then the inverse Fourier transform of $\hat{f}(k)$ is

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(k)e^{ikx} dk.$$
Properties of Fourier transform

Some important properties of Fourier transform:

1. Derivative to coefficient:

\[
(f'(x))(k) = ik \hat{f}(k);
\]

2. Translation property:

\[
(f(x - a))(k) = e^{-ika} \hat{f}(k);
\]

3. Convolution to multiplication:

\[
(f * g)(k) = \hat{f}(k) \hat{g}(k);
\]

where \((f * g)(x) = \int_{-\infty}^{+\infty} f(x - y)g(y)dy\).

4. Parseval’s identity:

\[
\int_{-\infty}^{+\infty} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |\hat{f}(k)|^2 dk.
\]
Discrete Fourier transform (DFT)

- Suppose we have \(\mathbf{a} = (a_0, a_1, \cdots, a_{N-1})^T \), define DFT of \(\mathbf{a} \) as
 \[
 \mathbf{c} = (c_0, c_1, \cdots, c_{N-1})^T \triangleq \hat{\mathbf{a}},
 \]
 where
 \[
 c_k = \sum_{j=0}^{N-1} a_j e^{-jk \frac{2 \pi i}{N}}, \quad k = 0, 1, \ldots, N - 1.
 \]

 Here \(i \) is the imaginary unit, \(e^{-\frac{2 \pi i}{N}} \triangleq \omega \) is the \(N \)-th root of unity.

- \(\mathbf{a} \) is the inverse discrete Fourier transform of \(\mathbf{c} \) defined as
 \[
 a_j = \frac{1}{N} \sum_{k=0}^{N-1} c_k e^{jk \frac{2 \pi i}{N}}, \quad j = 0, 1, \ldots, N - 1.
 \]

- DFT is closely related to the trigonometric interpolation for \(2\pi \)-periodic function
 \[
 T(x) = \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} b_k e^{ikx}.
 \]

 such that at \(x_j = \frac{2j\pi}{N} \), \(T(x_j) = a_j \), \(j = 0, 1, \ldots, N - 1 \). The readers may find the relation between \(c_k \) and \(b_k \).
Remark on DFT

- DFT can be considered as a linear transformation.
- Define Fourier matrix

\[
F = \begin{pmatrix}
1 & 1 & \ldots & 1 \\
1 & \omega & \ldots & \omega^{N-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \ldots & \omega^{(N-1)^2}
\end{pmatrix} = (\omega^{jk})_{j,k=0}^{N-1}
\]

where \(\omega \) is the \(N \)-th root of unity.

- \(c \) is the Fourier transform of \(a \) can be represented as

\[
c = F a
\]
Remark on DFT

- Inverse DFT can also be considered as a linear transformation.
- Define inverse Fourier matrix

\[
F^{-1} = G = \frac{1}{N} \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \cdots & \omega^{-(N-1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(N-1)} & \cdots & \omega^{-(N-1)^2}
\end{pmatrix} = (\omega^{-jk})_{j,k=0}^{N-1}
\]

where \(\omega \) is the \(N \)-th root of unity.

- \(a \) is the inverse Fourier transform of \(c \) can be represented as

\[
a = Gc
\]
Properties of DFT

- Convolution to multiplication:

\[
(f \ast g)_k = \hat{f}_k \hat{g}_k \quad k = 0, 1, \ldots, N - 1
\]

where

\[
(f \ast g)_l = \sum_{j=0}^{N-1} f_{l-j}g_j \quad l = 0, 1, \ldots, N - 1,
\]

and \(f_l\) is period \(N\) with respect to index \(l\), i.e.

\[
f_{-1} = f_{N-1}, f_{-2} = f_{N-2}, \ldots
\]

- Parseval’s identity:

\[
N \sum_{j=0}^{N-1} |a_j|^2 = \sum_{k=0}^{N-1} |c_k|^2
\]
FFT idea

- FFT is proposed by J.W. Cooley and J.W. Tukey in 1960s, but the idea may be traced back to Gauss.
- The basic motivation is if we compute DFT directly, i.e.
 \[
 c = Fa
 \]
 we need \(N^2\) multiplications and \(N(N-1)\) additions. Is it possible to reduce the computation effort?
- First consider the case \(N = 4\)

\[
F = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i \\
\end{pmatrix}, \quad Fa = \begin{pmatrix}
(a_0 + a_2) + (a_1 + a_3) \\
(a_0 - a_2) - i(a_1 - a_3) \\
(a_0 + a_2) - (a_1 + a_3) \\
(a_0 - a_2) + i(a_1 - a_3) \\
\end{pmatrix}
\]
FFT idea

- From the concrete form of DFT, we actually need 2 multiplications (timing \(\pm i \)) and 8 additions \((a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3 \) and the additions in the middle).
- This observation may reduce the computational effort from \(O(N^2) \) into \(O(N \log_2 N) \)

- Because

\[
\lim_{N \to \infty} \frac{\log_2 N}{N} = 0
\]

It is a typical fast algorithm.

- Fast algorithms of this type of recursive halving are very typical in scientific computing.
Construction of FFT

- Consider $N = 2^m$ and denote

$$p(x) = a_0 + a_1 x + \cdots + a_{N-1} x^{N-1},$$

divide $p(x)$ into odd (奇) and even (偶) power parts

$$p(x) = (a_0 + a_2 x^2 + \cdots) + x(a_1 + a_3 x^2 + \cdots)$$

$$= p_e(x^2) + x p_o(x^2)$$

where

$$p_e(t) = a_0 + a_2 t + \cdots + a_{N-2} t^{\frac{N}{2} - 1},
\quad p_o(t) = a_1 + a_3 t + \cdots + a_{N-1} t^{\frac{N}{2} - 1}$$

- Define $\omega_k = e^{-\frac{2\pi i}{k}}$ (k-th root of unity), then when $j = 0, 1, \ldots, \frac{N}{2} - 1$

$$\begin{cases}
 c_j &= p_e(\omega_N^{2j}) + \omega_N^{j} p_o(\omega_N^{2j}) \\
 c_{\frac{N}{2} + j} &= p_e(\omega_N^{2(\frac{N}{2} + j)}) + \omega_N^{\frac{N}{2} + j} p_o(\omega_N^{2(\frac{N}{2} + j)})
\end{cases}$$
Construction of FFT

▶ Pay attention that

\[\omega_{2j}^N = \omega_{N/2}^j, \quad \omega_{N/2}^j + j = -\omega_{N}^j, \quad \omega_{N}^{N+2j} = \omega_{N/2}^j \]

then

\[c_j = v_j + \omega_{N}^j u_j, \quad c_{j+N/2} = v_j - \omega_{N}^j u_j \quad \text{for } j = 0, 1, ..., \frac{N}{2} - 1 \]

where

\[v_j = p_e(\omega_{N/2}^j), \quad u_j = p_o(\omega_{N/2}^j) \]

▶ The formula above show that the DFT of \(N \) components vector \(a \) could be converted to compute the DFT of two \(\frac{N}{2} \) components vectors \(a_e, a_o \) and some simple additions and multiplications. This is called Danielson-Lanczos algorithm. The recursive application of this idea gives FFT.
A simple example: \(N = 8 \)

Suppose the array

\[
a = (a_0, a_1, \cdots, a_7)^T
\]

Step A: Splitting (reordering) (odd parts and even parts):

- Step 1

\[
a_e = (a_0, a_2, a_4, a_6)^T, \quad a_o = (a_1, a_3, a_5, a_7)^T;
\]

- Step 2

\[
a_{ee} = (a_0, a_4)^T, \quad a_{eo} = (a_2, a_6)^T, \\
a_{oe} = (a_1, a_5)^T, \quad a_{oo} = (a_3, a_7)^T;
\]

- Step 3

\[
\begin{array}{cccccccc}
a_{eee} & a_{eoo} & a_{oeo} & a_{eoo} & a_{oee} & a_{ooe} & a_{ooe} & a_{ooo} \\
a_0 & a_4 & a_2 & a_6 & a_1 & a_5 & a_3 & a_7
\end{array}
\]
A simple example: \(N = 8 \)

Step B: Combination:

- **Step 1**

\[
\begin{align*}
\mathbf{c}_{ee} &= (a_0 + \omega_2^0 a_4, a_0 - \omega_2^0 a_4)^T, \\
\mathbf{c}_{eo} &= (a_2 + \omega_2^0 a_6, a_2 - \omega_2^0 a_6)^T, \\
\mathbf{c}_{oe} &= (a_1 + \omega_2^0 a_5, a_1 - \omega_2^0 a_5)^T, \\
\mathbf{c}_{oo} &= (a_3 + \omega_2^0 a_7, a_3 - \omega_2^0 a_7)^T,
\end{align*}
\]

- Define the notations

\[
\begin{align*}
\mathbf{w}_4 &= (w_4^0, w_4^1)^T, \\
\mathbf{w}_8 &= (w_8^0, w_8^1, w_8^2, w_8^3)^T,
\end{align*}
\]

and

\[
X \circ Y \triangleq (x_j y_j)_j
\]

as the vector product through multiplication by components.
A simple example: \(N = 8 \)

Step B: Combination:

- **Step 2**

\[
\begin{align*}
\mathbf{c}_e &= \begin{bmatrix} c_{ee} + w_4 \circ c_{eo} \\ c_{ee} - w_4 \circ c_{eo} \end{bmatrix}, \\
\mathbf{c}_o &= \begin{bmatrix} c_{oe} + w_4 \circ c_{oo} \\ c_{oe} - w_4 \circ c_{oo} \end{bmatrix},
\end{align*}
\]

- **Step 3**

\[
\mathbf{c} = \begin{bmatrix} c_e + w_8 \circ c_0 \\ c_e - w_8 \circ c_0 \end{bmatrix}
\]
A simple sketch of FFT ($N = 8$)
A remark on the reordering

If we map \(e \) to 0, and \(o \) to 1, we can find the binary representation of the indices after reordering is just the bit reversal before reordering.

\[
\begin{align*}
0 &= 000_2 & 000_2 &= 0 \\
1 &= 001_2 & 100_2 &= 4 \\
2 &= 010_2 & 010_2 &= 2 \\
3 &= 011_2 & 110_2 &= 6 \\
4 &= 100_2 & 001_2 &= 1 \\
5 &= 101_2 & 101_2 &= 5 \\
6 &= 110_2 & 011_2 &= 3 \\
7 &= 111_2 & 111_2 &= 7
\end{align*}
\]
Outline

Examples

Fast Fourier Transform

Applications
Compute the convolution

- From the discretization at the beginning, we have

\[h_i = \sum_{j=0}^{N-1} f_{i-j} g_j \cdot \delta \quad i = 0, 1, \ldots, N - 1 \]

thus

\[h = (\hat{h})^\vee = (\delta \cdot \hat{f} \circ \hat{g})^\vee \]

- After using FFT, \(N^2 + N \) multiplications and \(N(N - 1) \) additions are reduced to \(\frac{3}{2}N \log_2 N + 2N \) multiplications and \(3N \log_2 N \) additions.
Solving the linear system with loop matrix

Let

\[L = \begin{pmatrix} c_0 & c_{N-1} & \cdots & c_1 \\ c_1 & c_0 & \cdots & c_2 \\ \vdots & \vdots & \ddots & \vdots \\ c_{N-1} & c_{N-2} & \cdots & c_0 \end{pmatrix} \]

Solving \(Lx = b \). \(L \) is a loop matrix.

We have

\[
(Lx)_i = \sum_{j=0}^{N-1} c_{i-j}x_j
\]

where we assume \(c \) is period \(N \) with respect to the subscripts, and \(x = (x_0, x_1, \ldots, x_{N-1})^T \).
Solving the linear system with loop matrix

First consider the Jordan form of L. From the formula before

$$Lx = c * x = \lambda x$$

Take DFT we have

$$\hat{c} \circ \hat{x} = \lambda \hat{x}$$

then eigenvalues

$$\lambda_k = \hat{c}_k$$

The eigenvectors

$$\hat{x}_j^{(k)} = \delta_{kj}, \quad (j, k = 0, 1, \ldots, N - 1)$$

where δ_{kj} is Kronecker’s δ.

Take inverse transform we obtain

$$x^{(0)} = (1, 1, \ldots, 1)^T,$$

$$x^{(1)} = (1, \omega^{-1}, \ldots, \omega^{-(N-1)})^T,$$

$$\ldots \ldots$$

$$x^{(N-1)} = (1, \omega^{-(N-1)}, \ldots, \omega^{-(N-1)^2})^T$$
Solving the linear system with loop matrix

- Spectral decomposition of L

$$L = \begin{pmatrix} x^{(0)} & x^{(1)} & \cdots & x^{(N-1)} \end{pmatrix} \begin{pmatrix} \lambda_0 & & & \\ & \lambda_1 & & \\ & & \ddots & \\ & & & \lambda_{N-1} \end{pmatrix} = (NF^{-1})\Lambda (NF^{-1})^{-1} = F^{-1}\Lambda F$$

- Solving $Lx = b$ is equivalent to $F^{-1}\Lambda Fx = b$, i.e. $\Lambda(Fx) = Fb$. Then it is composed of three steps:
 - Step 1: Compute Fb i.e. apply FFT to b to obtain \hat{b};
 - Step 2: Compute Λ i.e. apply FFT to c to obtain \hat{c};
 - Step 3: Compute $\hat{x}_k = \hat{b}_k / \hat{c}_k$, and then compute $(\hat{x})^\vee$ to obtain x.

Examples

Fast Fourier Transform

Applications
Homework assignment

- Familiarize the “FFT” and “IFFT” command in MATLAB;
- Compute the convolution for

\[h(x) = \int_0^{2\pi} \sin(x - y)e^{\cos y} dy \]