Lecture 5 Singular value decomposition

Weinan E1,2 and Tiejun Li2

1Department of Mathematics, Princeton University, weinan@princeton.edu

2School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

No.1 Science Building, 1575
Outline

Review and applications

QR for symmetric matrix

Numerical SVD
Theorem (Singular value decomposition)

Let \(A \in \mathbb{R}^{m \times n} \), then there exist \(U \in \mathbb{R}^{m \times m} \), \(V \in \mathbb{R}^{n \times n} \) and \(\Sigma \in \mathbb{R}^{m \times n} \) such that

\[
A = U \Sigma V
\]

where \(\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r) \in \mathbb{R}^{m \times n} \). \(r \) is the rank of \(A \), \(\sigma_i > 0 \) are called singular values of \(A \), \(U^T U = I \), \(V^T V = I \) are orthogonal matrices.

It is straightforward that

\[
A^T A = V^T \Sigma^T \Sigma V = V^T \text{diag}(\sigma_1^2, \ldots, \sigma_r^2, 0, \ldots, 0) V
\]

i.e. the singular value \(\sigma_i = \sqrt{\lambda_i(A^T A)} \). Similarly we have \(\sigma_i = \sqrt{\lambda_i(A A^T)} \).
About singular values

- To find the orthogonal matrices U and V is equivalent to find the eigenvectors of matrices $A^T A$ and AA^T.

- If A is symmetric, the singular value matrix $\Sigma = D$, where $D = \text{diag}(\lambda_1, \ldots, \lambda_r, 0, \ldots, 0)$. λ_i is the eigenvalues of A, and $V = U^T$.

- The 2-norm of a matrix

\[\|A\|_2 = \sqrt{\lambda_{\text{max}}(A^T A)} = \sigma_{\text{max}}. \]

- The 2-condition number

\[\text{Cond}_2(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}. \]
Generalized inverse of a matrix

- In general, if A is singular, A^{-1} doesn’t exist! If $A \in \mathbb{R}^{m \times n}$, there is no definition for A^{-1}.

- We define the Moore-Penrose generalized inverse of A as

$$A^+ = V^T \text{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, 0)U^T$$

for arbitrary matrix A!
Least square problems

- Least square problem 1: $Ax = b$ may have more than one solution. If it has more than one solution we wish to pick one with $\|x\|_2$ is the smallest, i.e., to find $x \in S = \{x | Ax = b\}$ such that
 $$\min_{x} \|x\|_2$$

- Least square problem 2: if it has no solution we wish to pick one which is the solution of the following minimization problem
 $$\min_{x} \|Ax - b\|_2$$

- In any case we have the following solution by generalized inverse
 $$x = A^+ b.$$
Multivariate linear regression

- Formulation
 Suppose we have a list of experimental data for a multi-variate function $Y = f(x_1, x_2, \ldots, x_m)$, after taking the zero-th and first order terms, we approximate Y as

 $$Y = \beta_0 + \beta_1 x_1 + \cdots + \beta_m x_m$$

 The problem is how to recover β_i from the data?

- Naively consider the linear system

 $$Y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_m x_{im}$$

 and $i = 1, \ldots, n$. It may have no solution or have infinite solutions. This is reduced to the least square problem for

 $$X\beta = Y$$
Multivariate linear regression

We have

\[
X = \begin{pmatrix}
1 & x_{11} & x_{12} & \cdots & x_{1m} \\
1 & x_{21} & x_{22} & \cdots & x_{2m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & x_{n2} & \cdots & x_{nm}
\end{pmatrix}, \quad \beta = \begin{pmatrix}
\beta_0 \\
\beta_1 \\
\vdots \\
\beta_m
\end{pmatrix}
\]

Least square solution

\[\beta = X^+ Y\]
Principal component analysis (PCA)

- **Object:** For a multi-component problem, is it possible to catch very few but very important characters to reduce the scale or dimension of the problem?

- **Answer:** Yes! PCA can do this job!
Principal component analysis (PCA)

- **PCA**

 Suppose we have experimental data to \(n \) characters of \(t \) units for a biological species, which can be proposed a matrix under experiments or investigations as

 \[
 Y = \begin{pmatrix}
 y_{11} & y_{12} & \cdots & y_{1n} \\
 y_{21} & y_{22} & \cdots & y_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 y_{t1} & y_{t2} & \cdots & y_{tn}
 \end{pmatrix}
 \]

 - **Object:** **Intuitively,** PCA is to find vectors
 \(a_i = (a_{1i}, a_{2i}, a_{ni}) \) \((i = 1, \ldots, n) \) such that
 \[
 F_i = a_{1i}y_1 + a_{2i}y_2 + \cdots + a_{ni}y_n, \quad i = 1, \ldots, n
 \]

 are perpendicular each other, and pick up some large components among \(\|F_i\|_2 \). The analysis of \(a_i \) will give the main components of the problem.
Principal component analysis (PCA)

A geometrical interpretation of PCA for 2D coordinates analysis

▷ A mathematical rigorous interpretation (Projection maximization)

\[
\max_{\|a\|_2=1} \sum_{i=1}^{N} (x_i \cdot a)^2 = a^T X^T X a
\]

▷ Courant-Fisher’s theorem gives PCA.
Principal component analysis (PCA)

- Step 1: non-dimensionalization

Calculate the mean $\bar{y}_j = \frac{1}{t} \sum_{k=1}^{t} y_{kj}$, $j = 1, 2 \ldots, n$

Calculate variance $d_j = \sqrt{\sum_{k=1}^{t} (y_{kj} - \bar{y}_j)^2}$, $j = 1, 2 \ldots, n$

Transformation $x_{ij} = \frac{y_{ij} - \bar{y}_j}{d_j}$, $i = 1, 2 \ldots, t; j = 1, 2 \ldots, n$

Non-dimensionalization is used to eliminate the effect of choice of unit (单位).
Review and applications

Principal component analysis (PCA)

Step 2: Define principal component vector as

\[F_i = a_{1i}x_1 + a_{2i}x_2 + \cdots + a_{ni}x_n, \quad i = 1, \ldots, n \]

where \(x_i = (x_{1i}, x_{2i}, \ldots, x_{ti}) \). In order the vectors are independent each other, we need

\[F_i^T F_j = 0, \quad i \neq j \]

i.e.

\[F_i^T F_j = (a_{1i} \ a_{2i} \ \cdots \ a_{ni})X^T X \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix} = 0 \]
Principal component analysis (PCA)

Step 3: There exists orthogonal matrix A such that

$$A^T X^T X A = \text{diag}(\lambda_1, \ldots, \lambda_n)$$

and $\lambda_k \geq 0$ ($k = 1, \ldots, n$). We have if $i \neq j$, the vectors a_i, a_j in the i-th and j-th column will satisfy the independent condition, and

$$\|F_i\|_2 = \lambda_i$$

Step 4: Take the eigenvectors a_i corresponding to the first m biggest eigenvalues ($\lambda_1 > \lambda_2 > \cdots > \lambda_m > \cdots$), and make linear combination

$$F_i = a_{1i}x_1 + a_{2i}x_2 + \cdots + a_{ni}x_n, \quad i = 1, 2, \ldots, m$$

We will obtain the first m principal component vectors.
PCA and SVD

If X has SVD

\[X = U \Sigma V \]

then we have $A = V^T$, and

\[V X^T X V^T = \Sigma^T \Sigma \]

To find the first m principal component vectors is equivalent to find the first m principal (biggest) singular value and corresponding right singular vectors.
Outline

Review and applications

QR for symmetric matrix

Numerical SVD
Tri-diagonalization of symmetric matrix

- First transform symmetric A into tri-diagonal matrix T

$$T = \begin{pmatrix}
\alpha_1 & \beta_1 & & & \\
\beta_1 & \alpha_2 & \ddots & \\
& \ddots & \ddots & \beta_{n-1} \\
& & \beta_{n-1} & \alpha_n
\end{pmatrix}$$

by a sequence of Householder transformations.

- The transformation procedure is the same as that for upper Hessenburg form with symmetry argument.
Tri-diagonalization of symmetric matrix

- The approach is to apply Householder transformation to A column by column.

$$A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}$$

- Suitably choose Householder matrix H_1 such that

$$H_1 \cdot \begin{pmatrix}
 a_{11} \\
 a_{21} \\
 a_{31} \\
 \vdots \\
 a_{n1}
\end{pmatrix} = \begin{pmatrix}
 a'_{11} \\
 a'_{21} \\
 0 \\
 \vdots \\
 0
\end{pmatrix}, \quad H_1 = \begin{pmatrix}
 1 & 0 \\
 0 & H_1'
\end{pmatrix}$$
Now we have

\[A_1 = H_1 A H_1 = \begin{pmatrix} a'_{11} & a'_{12} & \cdots & 0 \\ a'_{21} & a'_{22} & \cdots & a'_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a'_{n2} & \cdots & a'_{nn} \end{pmatrix} \]

by symmetry of \(A \) and \(A_1 \).

The next step is the same for upper Hesseburg form. Finally we have tridiagonal form \(T \) and \(T \) has the same eigenvalues as \(A \).
Implicit shifted QR for symmetric tridiagonal matrix

Now we have symmetric tridiagonal T with diagonal entries $\alpha_i (i = 1, \ldots, n)$ and off-diagonal entries $\beta_i (i = 1, \ldots, n - 1)$, one shifted QR step is

$$T - \mu I = QR$$

$$\hat{T} = RQ + \mu I$$

In fact

$$\hat{T} = Q^T T Q$$

If we can find Q, \hat{T} directly, we doesn’t need the intermediate steps.

In fact

$$Q^T T Q = Q^T (QR + \mu I) Q = RQ + \mu I = \hat{T}.$$
Implicit shifted QR for symmetric tridiagonal matrix

- Find Givens matrix $G_1 = G(1, 2; \theta_1)$ such that

$$
\begin{pmatrix}
c & s \\
-s & c
\end{pmatrix}^T \begin{pmatrix}
\alpha_1 - \mu \\
\beta_1
\end{pmatrix} = \begin{pmatrix}
* \\
0
\end{pmatrix}
$$

- Define

$$T_1 = G_1^T T G_1.$$

We have

$$T_1 = \begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
\vdots & \vdots & \ddots \\
* & * & * \\
* & * & *
\end{pmatrix}$$

- We should zero out the term *$. That only needs another Givens matrix G_2 multiplication.
Implicit shifted QR for symmetric tridiagonal matrix

- We can find Givens matrix $G_2 = G(2, 3; \theta_2)$ such that the term $*$ would be zero out.

- Define

$$T_2 = G_2^T G_1^T T G_1 G_2$$

We have

$$T_2 = \begin{pmatrix}
* & * & & & \\
* & * & * & & * \\
* & * & * & & \\
* & \cdots & \cdots & * \\
* & \cdots & \cdots & * \\
* & * & & &
\end{pmatrix}$$

- We should zero out the term $*$ again. That needs a Givens matrix multiplication again.
Implicit shifted QR for symmetric tridiagonal matrix

- Sequentially we have

\[T_{n-2} = \begin{pmatrix}
 * & * & & \\
 * & * & * & \\
 * & * & \ddots & * \\
 \vdots & \vdots & \ddots & * \\
 * & * & & *
\end{pmatrix} \]

- Finally we obtain

\[\hat{T} = \begin{pmatrix}
 * & * & & \\
 * & * & * & \\
 * & * & \ddots & * \\
 \vdots & \vdots & \ddots & * \\
 * & * & & *
\end{pmatrix} \]
Implicit shifted QR for symmetric tridiagonal matrix

- Iterating for \(\hat{T} \) to obtain the next QR step!
- In general the shift is chosen as the famous Wilkinson’s shift: If the submatrix of \(T \)

\[
S = \begin{pmatrix}
\alpha_{n-1} & \beta_{n-1} \\
\beta_{n-1} & \alpha_n
\end{pmatrix}
\]

then choose \(\mu \) one of the eigenvalues of \(S \) which is more closer to \(\alpha_n \).

\[
\mu = \alpha_n + \delta - \text{sign}(\delta) \sqrt{\delta^2 + \beta_{n-1}^2}
\]

and \(\delta = \frac{\alpha_n + \alpha_{n-1}}{2} \).
- The convergence will be very fast with this shift.
Outline

Review and applications

QR for symmetric matrix

Numerical SVD
Implicit QR method for singular value computation

- First transform A into upper bidiagonal matrix B

$$B = \begin{pmatrix}
 d_1 & f_2 \\
 & d_2 & \ddots \\
 & & \ddots & f_n \\
 & & & d_n
\end{pmatrix}$$

by a sequence of Householder transformations

$A \xrightarrow{U_1} \text{eliminate the first column} \xrightarrow{V_1} \text{eliminate the first row} \ldots$

$\xrightarrow{U_n} \text{eliminate the n-th column} = \begin{pmatrix}
 B \\
 0
\end{pmatrix}$

- A has the same singular values as B.
Implicit QR method for singular value computation

- First transform A into upper bidiagonal matrix B

$$B = \begin{pmatrix}
 d_1 & f_2 \\
 & d_2 & \ddots \\
 & & \ddots & f_n \\
 & & & d_n
\end{pmatrix}$$

by a sequence of Householder transformations

$$A \xrightarrow{U_1} \text{eliminate the first column} \xrightarrow{V_1} \text{eliminate the first row} \rightarrow \cdots \rightarrow$$

$$U_n \xrightarrow{} \text{eliminate the n-th column} = \begin{pmatrix} B \\ 0 \end{pmatrix}$$

- Now we have

$$U_n \cdots U_1 A V_1 \cdots V_{n-1} = \begin{pmatrix} B \\ 0 \end{pmatrix}$$
Implicit shifted QR method for singular value computation

- Basic idea: Implicitly apply shifted QR method to symmetric tridiagonal matrix $B^T B$ but without forming it.

- Steps:
 - Determine the shift μ. This is equivalent to the shift step for $B^T B$.
 Wilkinson shift: set μ is the eigenvalue of
 \[
 \begin{pmatrix}
 d_{n-1}^2 + f_{n-1}^2 & d_{n-1}f_n \\
 d_{n-1}f_n & d_n^2 + f_n^2
 \end{pmatrix}
 \]
 closer to $d_n^2 + f_n^2$ to make the convergence faster.
 - Find Givens matrix $G_1 = G(1, 2; \theta)$ such that
 \[
 \begin{pmatrix} c & s \\ -s & c \end{pmatrix}^T \begin{pmatrix} d_1^2 - \mu \\ d_1f_2 \end{pmatrix} = \begin{pmatrix} * \\ 0 \end{pmatrix}
 \]
 and compute BG_1.
 This is equivalent to apply G_1 step for $B^T B$.
Implicit shifted QR method for singular value computation

- We have

\[
BG_1 = \begin{pmatrix}
 * & * \\
 * & * & * \\
 \vdots & \ddots & * \\
 \vdots & \ddots & * \\
 * & & & \\
\end{pmatrix}
\]

so we should zero out the term *. We want to find \(P_2 \) and \(G_2 \) such that \(P_2(BG_1)G_2 \) is bidiagonal and \(G_2e_1 = e_1 \).

This is equivalent to apply \(G_2 \) step for \(G_1^TB^TBG_1 \).
Implicit shifted QR method for singular value computation

- It is not difficult to find P_2 and G_2 by Givens transformation and we have

$$P_2BG_1G_2 = \begin{pmatrix}
 * & * \\
 * & * \\
 * & * \\
 \vdots & \vdots & \ddots \\
 \end{pmatrix}$$

so we should zero out the term *. We want to find P_3 and G_3 such that $P_3P_2BG_1G_2G_3$ is bidiagonal and $G_3e_i = e_i$, $i = 1, 2$.

These steps should be repeated until BG_1 becomes bidiagonal! It is equivalent to find G_i steps for symmetric tridiagonal matrix.
Implicit shifted QR method for singular value computation

Finally we have

\[P_{n-1} \cdots P_2BG_1 \cdots G_{n-1} = \begin{pmatrix} * & * \\ & * & * \\ & & * & \ddots \\ & & & & * \\ & & & & & * \end{pmatrix} \]

Iterate until the off-diagonal entries converge to 0, and the diagonal entries converge to singular values!