1(20 points): In each of the following five problems, the roots of the characteristic equation of a certain homogenous differential equation are given. Write the general solution of the homogeneous differential equation. For each of the following problems, \(x \) is the independent variable, and \(y(x) \) is the unknown function. You can use \(c_1, c_2, \cdots \) to denote the arbitrary constants in the expression of the general solution.

1. Roots: \(-2, -1/3, -1/3, 0, \sqrt{2}\)
 General solution: \(c_1 e^{-2x} + c_2 e^{-\frac{x}{3}} + c_3 x e^{-\frac{x}{3}} + c_4 + c_5 e^{\sqrt{2}x}\)

2. Roots: \(3i, -3i, 3i, -3i, 3i, -3i\)
 General solution: \(c_1 \cos 3x + c_2 \sin 3x + c_3 x \cos 3x + c_4 x \sin 3x + c_5 x^2 \cos 3x + c_6 x^2 \sin 3x\)

3. Roots: \(2 + 7i, 2 + 7i, 2 - 7i, 2 - 7i\)
 General solution: \(c_1 e^{2x} \cos 7x + c_2 e^{2x} \sin 7x + c_3 x e^{2x} \cos 7x + c_4 x e^{2x} \sin 7x\)

4. Roots: \(0, 0, 3, -2 + 3i, -2 - 3i\)
 General solution: \(c_1 + c_2 x + c_3 x^2 + c_4 e^{2x} + c_5 e^{-2x} \cos 3x + c_6 e^{-2x} \sin 3x\)

5. Roots: \(-1, 0, 3, 3 + \sqrt{7}i, 3 - \sqrt{7}i\)
 General solution: \(c_1 e^{-x} + c_2 + c_3 x + c_4 e^{3x} + c_5 e^{3x} \cos 7x + c_6 e^{3x} \sin 7x\)

2. (20 points) In each of the following five problems, set up the appropriate form of the a particular solution \(y_p\), but DO NOT determine the values of the coefficients. You can use \(A, B, C, \cdots\) to denote the coefficients. (Hint: operator \(D\) is explained at the end of the problem.)
1. \((\mathbb{D} + 2)(\mathbb{D} + 1)y = e^{2x} + 3e^{3x} + x^2e^x\)

 \[y_p = Ae^{2x} + Be^{3x} + (C + Dx + Ex^2)e^x\]

2. \((\mathbb{D} + 2)(\mathbb{D} + 1)y = \sin 2x + \sin 3x\)

 \[y_p = A\cos 2x + B\sin 2x + C\cos 3x + D\sin 3x\]

3. \(\mathbb{D}^2(\mathbb{D} + 2)(\mathbb{D} + 1)y = 3x^2 + \cos(3x)\)

 \[y_p = x^2(A + Bx + Cx^2) + D\cos 3x + E\sin 3x\]

4. \((\mathbb{D}^2 + 4)y = x\sin 2x + e^x\)

 \[y_p = x[(A + Bx)\cos 2x + (C + Dx)\sin 2x] + Ee^x\]

5. \((\mathbb{D} + 2)(\mathbb{D} + 1)y = e^{2x}\cos(2x)\)

 \[y_p = Ae^{2x}\cos 2x + Be^{2x}\sin 2x\]

(Hint: In this problem, we suppose that \(y(x)\) is the unknown function and \(x\) is the independent variable. \(\mathbb{D}\) is an operator denoting the operation of differentiation with respect to \(x\), so that

\[\mathbb{D} y = \frac{dy}{dx} = y'\]

We know it is easy to get the characteristic equation for differential equations written by using the operator \(\mathbb{D}\), e.g. the characteristic equation of

\[(\mathbb{D} - 2)^2(\mathbb{D} + 3)y = 0\]

is

\[(r - 2)^2(r + 3) = 0\).
3(15 points): Solve the following initial value problem \((x)\) is the independent variable):
\[y'' + 4y = 8x^2; \quad y(0) = 1, \quad y'(0) = 0. \]

Solution: The characteristic equation is
\[r^2 + 4 = 0 \]
and its roots are \(\pm 2i \). So the complementary function is
\[y_c = c_1 \cos 2x + c_2 \sin 2x \]
The first guess of a particular solution is of the form
\[y_p = A + Bx + Cx^2 \]
according to the right hand of the nonhomogeneous equation. Compare \(y_c \) and \(y_p \) and we find there is no duplication. So the appropriate form of a particular solution is
\[y_p = A + Bx + Cx^2 \]
Substitution \(y_p \) and its derivatives into the nonhomogeneous equation yields
\[2C + 4(A + Bx + Cx^2) = 8x^2 \]
Collecting coefficients and equating the coefficients of like terms yield
\[2C + 4A = 0; \quad 4B = 0; \quad 4C = 8 \]
So \(A = -1, \ B = 0, \ C = 2 \). So the general solution of the nonhomogeneous equation is
\[y = c_1 \cos 2x + c_2 \sin 2x + (-1 + 2x^2) \]
The initial conditions \(y(0) = 1 \) and \(y'(0) = 0 \) yield
\[1 = c_1 \cos(2 \cdot 0) + c_2 \sin(2 \cdot 0) + (-1 + 2 \cdot 0^2) \]
\[0 = -2c_1 \sin(2 \cdot 0) + 2c_2 \cos(2 \cdot 0) + 4 \cdot 0 \]
So \(c_1 = 2, \ c_2 = 0 \). Plugging \(c_1 \) and \(c_2 \) into the general solution yields the solution of the initial value problem
\[y = -1 + 2x^2 + 2 \cos 2x \]
4. (15 points) Use the method of variation of parameters to find a particular solution of the given differential equation (x is the independent variable)

\[y'' - 2y' + 2y = e^x \sec x. \]

Solution: The characteristic equation $r^2 - 2r + 2 = 0$ has roots $1 \pm i$. So the complementary function is

\[y_c = c_1 e^x \cos x + c_2 e^x \sin x \]
\[y_1 = e^x \cos x, \quad y_2 = e^x \sin x \]

The Wronskian is

\[W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = e^{2x} \]

\[u'_1(x) = - \frac{y_2(x)e^x \sec x}{W(x)} = - \frac{e^x \sin x \sec x}{e^x} = - \tan x \]

\[u'_2(x) = \frac{y_1(x)e^x \sec x}{W(x)} = - \frac{e^x \cos x \sec x}{e^x} = 1 \]

\[u_1(x) = \int - \tan x \, dx = \ln |\cos x| \]

\[u_2(x) = \int 1 \, dx = x \]

So we get a particular solution

\[y = u_1(x)y_1(x) + u_2(x)y_2(x) = \ln |\cos x| e^x \cos x + xe^x \sin x \]
5. (10 points): Transform the given equation (t is the independent variable) into an equivalent system of first-order differential equations.

$$x^{(4)} = 3x^{(3)} + 5x'' + 3x + \cos 4t.$$

Solution: Let $x_1 = x, x_2 = x', x_3 = x'', x_4 = x^{(3)}$.

Equivalent system:

\begin{align*}
x_1' &= x_2 \\
x_2' &= x_3 \\
x_3' &= x_4 \\
x_4' &= 3x_4 + 5x_3 + 3x_1 + \cos 4t
\end{align*}
6. (15 points) Find general solutions of the given linear system \((t\) is the independent variable) by using the method of elimination.

\[
x' = 2x + y, \quad y' = x + 2y - e^{2t}
\]

Solution:

\[
x' = 2x + y \quad (1)
\]

\[
y' = x + 2y - e^{2t} \quad (2)
\]

From Eq. (1), we have

\[
y = x' - 2x \quad (3)
\]

and

\[
y' = x'' - 2x' \quad (4)
\]

Plugging Eq. (3) and Eq. (4) into Eq. (2) yields

\[
x'' - 2x' = x + 2(x' - 2x) - e^{2t}
\]

which is simplified into

\[
x'' - 4x' + 3x = -e^{2t} \quad (5)
\]

The characteristic equation of Eq. (5) \(r^2 - 4r + 4 = 0\) has roots 1 and 3. So the complementary function of Eq. (5) is

\[
x_c = c_1 e^t + c_2 e^{3t} \quad (6)
\]

First guess of the form of a particular solution is

\[
x_{\text{trial}} = Ae^{2t} \quad (7)
\]

Comparing \(x_c\) and \(x_{\text{trial}}\), we find there is no duplication and get the appropriate form of a particular solution

\[
x_p = Ae^{2t} \quad (8)
\]

Plugging Eq. (8) into Eq. (5) yields

\[
4Ae^{2t} - 4 \cdot (2Ae^{2t}) + 3Ae^{2t} = -e^{2t}
\]

which gives \(A = 1\). We plug \(A = 1\) into Eq. (8) and get a particular solution

\[
x_p = e^{2t}
\]

So the general solution for \(x\) is

\[
x = c_1 e^t + c_2 e^{3t} + e^{2t} \quad (10)
\]

And we can get from Eq. (10)

\[
x' = c_1 e^t + 3c_2 t e^{3t} + 2e^{2t} \quad (11)
\]

Plugging Eqs. \((refeq10)\) and (11) into Eq. (3) yields the general solution for \(y\)

\[
y = -c_1 e^t + 2c_2 e^{3t} \quad (12)
\]

So the general solution of the system is (10) and (12).
Use the Wronskian to prove the functions

\[f(x) = e^x, \quad g(x) = e^{2x}, \quad h(x) = e^{3x} \]

are linearly independent on the real line.

Solution: Wronskian of the three functions is

\[
W(f(x), g(x), h(x)) = \begin{vmatrix}
 e^x & e^{2x} & e^{3x} \\
 e^x & 2e^{2x} & 3e^{3x} \\
 e^x & 4e^{2x} & 9e^{3x}
\end{vmatrix}
\]

\[
= e^{(x+2x+3x)} \begin{vmatrix}
 1 & 1 & 1 \\
 1 & 2 & 3 \\
 1 & 4 & 9
\end{vmatrix}
\]

\[
= e^{6x} \begin{vmatrix}
 1 & 1 & 1 \\
 0 & 1 & 2 \\
 0 & 3 & 8
\end{vmatrix}
\]

\[
= e^{6x} \begin{vmatrix}
 1 & 1 & 1 \\
 0 & 1 & 2 \\
 0 & 0 & 2
\end{vmatrix}
= 2e^{6x} \neq 0
\]

So the three functions are linearly independent on the real line.