文科高数(法学, 元培)作业分析(二) *

任课教师: 卢晓(tlu@math.pku.edu.cn)
助教: 胡煜成(huyec@pku.edu.cn) 王珊(shasti0@pku.edu.cn)

November 2, 2006

1 第一章(解答题)

20. 指出下列函数的连续区间, 如有间断点指出它所属的类型:

(1) \(y = \frac{x^3}{1 + x} \).

正确解法: 连续区间: \((-\infty, -1)\)及\((-1, +\infty)\);
\(y(-1 - 0) = +\infty, \ y(-1 + 0) = -\infty, \) 从而 \(x = -1 \) 为第 II 类间断点.

错误解法: 连续区间: \((-\infty, -1)\)及\((-1, +\infty)\);
\(y(-1 - 0) = +\infty, \ y(-1 + 0) = -\infty, \) 左右极限均存在, 从而 \(x = -1 \) 为第 I 类间断点.

说明: 在考察间断点时, 如果出现左右极限为无穷的情形(例如本题), 应认为该点极限不存在, 从而为第二类间断点.

21. 利用函数连续性计算下列各极限:

(1) \(\lim_{x \to \infty} \frac{1 - x}{1 + x} \)

正确解法: 由于该函数是初等函数, 且 \(x \to 0 \) 在其定义区间内, 故由初等函数的连续性, 有

\[
\lim_{x \to \infty} \frac{1 - x}{1 + x} = \frac{\cos(1 - x)}{\cos(1 + x)} = \cos(-1) = \cos(1).
\]

其中, 倒数第二个等号用到了

\[
\lim_{x \to \infty} \frac{1 - x}{1 + x} = -1.
\]

这是因为, 用 \(x \) 除上式的分母与分子, 得

\[
\lim_{x \to \infty} \frac{1 - x}{1 + x} = \lim_{x \to \infty} \frac{\frac{1}{x} - \frac{1}{x^2}}{\frac{1}{x} + \frac{1}{x^2}} = -1.
\]

错误解法:

\[
\lim_{x \to \infty} \cos \frac{1 - x}{1 + x} = \lim_{x \to \infty} \frac{1 - x}{1 + x} = 1.
\]

说明: 若 \(f(x) \) 是连续函数, 初等函数连续性的性质是,

\[
\lim_{x \to x_0} f(x) = f(x_0),
\]
从而

\[
\lim_{x \to x_0} f(g(x)) = f(\lim_{x \to x_0} g(x)),
\]
在本题中, \(f(x) = \cos x, g(x) = \frac{1 - x}{1 + x} \) 即可.

2 第二章(解答题)

6. 若函数

\[
f(x) = \begin{cases}
x^2, & x \leq x_0, \\
ax + b, & x > x_0,
\end{cases}
\]

试选择 \(a, b \) 使 \(f(x) \) 处处可导, 并作出草图来.

正确解法: 由于 \(f(x) \) 在区间 \((-\infty, x_0)\) 和 \((x_0, +\infty)\) 上分别是多项式函数, 只需选择恰当的 \(a, b \) 使 \(f(x) \) 在 \(x = x_0 \) 处连续且可导, 则 \(f(x) \) 便能处处可导.

\(x_0 \) 点的连续性要求

\[
\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = f(x_0),
\]
即

\[
x_0^2 = ax_0 + b.
\]

*本文仅供以学习目的的自由传播和复制, 但不得用于任何形式的盈利用途.
7. 求下列函数的导数:

(1) \(y = \frac{x + 1}{x - 1} \);

正确解法：
\[
y' = \frac{(x - 1) - (x + 1)}{(x - 1)^2} = -\frac{2}{(x - 1)^2}.
\]

(2) \(y = \frac{2}{x - 1} \);

错误解法：
\[
y' = (1 + \frac{2}{x - 1})' = \frac{2}{(x - 1)^2}.
\]

说明：注意 \(\frac{d}{dx} \left(\frac{1}{x} \right) = -\frac{1}{x^2} \).

(5) \(y = \frac{2}{x^2 - 1} \);

正确解法：
\[
y' = -\frac{2}{(x^2 - 1)^2} \cdot (x^2 - 1)' = -\frac{2}{(x^2 - 1)^2} \cdot \frac{2x}{4x} = -\frac{1}{(x^2 - 1)^2}.
\]

说明：本题要注意内外层函数都要求导，另外还要注意 \(\frac{d}{dx} \left(\frac{1}{x} \right) = -\frac{1}{x^2} \).

(19) \(y = (\sin x)^{\cos x} \);

正确解法：
对 \(y = (\sin x)^{\cos x} \) 的两边取对数，得到
\[
\ln y = \cos x \ln(\sin x).
\]

在上式两边同时对 \(x \) 求导，得到
\[
y' = y' \cdot \cos x \cdot \cot x - \sin x \ln(\sin x)
\]
\[
= (\sin x)^{\cos x} \cdot (\cos x \cdot \cot x - \sin x \ln(\sin x)).
\]

说明：若亚作业情况，同学们可确定对第二种方法还不够熟悉，出错率高。建议没有把握的同学使用第一种方法。

10. 判断函数
\[
f(x) = \begin{cases}
 x^2 + 1, & x \leq 1, \\
 2x + 3, & x > 1,
\end{cases}
\]

在 \(x = 1 \) 处可导。

正确解法：考察 \(f(x) \) 在 \(x = 1 \) 处的连续性，
\[
\lim_{x \to 1^-} f(x) = 2, \quad \lim_{x \to 1^+} f(x) = 5,
\]
\[
\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x),
\]
即 \(f(x) \) 在 \(x = 1 \) 处不连续，从而不可导。
正确解法：

\[
f'_-(1) = \lim_{\Delta x \to 0^+} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{2(1 + \Delta x) + 3}{\Delta x} = \lim_{\Delta x \to 0^+} (2 + \frac{3}{\Delta x}) = +\infty.
\]

\[
f'_-(1) \neq f'_+(1),
\]

从而 \(f(x)\) 在 \(x = 1\) 不可导。

错误解法：

\[
f'_-(1) = \lim_{\Delta x \to 0^-} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{2(1 + \Delta x) + 3}{\Delta x} = \lim_{\Delta x \to 0^-} (2 + \frac{3}{\Delta x}) = +\infty.
\]

\[
f'_-(1) = f'_+(1),
\]

从而 \(f(x)\) 在 \(x = 1\) 可导。

错误解法：

\[
f'_+(1) = \lim_{\Delta x \to 0^+} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{2(1 + \Delta x) + 3}{\Delta x} = \lim_{\Delta x \to 0^+} (2 + \frac{3}{\Delta x}) = 2.
\]

\[
f'_-(1) = f'_+(1),
\]

然而，

\[
\lim_{x \to 1^-} f(x) = 2, \quad \lim_{x \to 1^+} f(x) = 5,
\]

\[
\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x),
\]

即 \(f(x)\) 在 \(x = 1\) 处不连续，从而不可导。

说明：第一种方法用到的是可导的必要条件——连续；第二种方法用到的是导数存在的等价定义——左右导数存在且相等。可以看出，第一种正确解法比第二种正确方法简洁。

第一种错误方法得到了错误的结论，第二种错误方法虽然结论正确，然而过程存在严重错误。与第二种正确方法比较，两种错误方法在求右极限的过程中存在错误。具体说来，是 \(f(1)\) 的取值存在错误，请仔细看 \(f(x)\) 的定义。

另外，这个例子曾经在课上提到过。

3 其它

3.1 化简

3.1.1 结果的化简

(17) \(y = \ln(x + \sqrt{x^2 + a^2})\);
正确解法：

\[y' = \frac{1}{x + \sqrt{x^2 + a^2}} \cdot (x + \sqrt{x^2 + a^2})' \]
\[= \frac{1}{x + \sqrt{x^2 + a^2}} \cdot (1 + \frac{1}{2\sqrt{x^2 + a^2}} \cdot (x^2 + a^2)') \]
\[= \frac{1}{x + \sqrt{x^2 + a^2}} \cdot (1 + \frac{1}{2\sqrt{x^2 + a^2}} \cdot 2x) \]
\[= \frac{1}{x + \sqrt{x^2 + a^2}} \cdot x + \frac{x + \sqrt{x^2 + a^2}}{\sqrt{x^2 + a^2}} \]
\[= \sqrt{x^2 + a^2}. \]

说明：很多同学得到了答案的等价形式，但是在最后答案中还是应该给出约分后的最简形式。

另外，其他一些题目的结果也出现了没有化简的情况，如：
\[\frac{4x}{(x^2 - 1)^2} \]
成为：
\[\frac{2x}{(x^2 - 1)^2} \cdot (-2). \]

下面说明一下化简的要求，其实是：一、能约分的要约分；二、合并同类项；三、系数要写相乘后的结果，要写在表达式前面。

3.1.2 计算过程中的化简
在计算过程中及时约分和合并同类项可以减少计算量。例如15(1)。

3.2 书写
注意：\(f(x) \) 在 \(x = x_0 \) 点的值应该写成 \(f'(x_0) \) 而不是 \((f(x_0))' \)。当然，这在课上强调过了，不知道是不是同学们听反了。

3.3 做法的选择
合适的做 法可以减少计算量和出错的可能。如7(5), 10.