From Discrete Velocity Method to Moment Method

Yuwei Fan

jointed with: Z.-N. Cai, R. Li

Schoole of Math Science, Peking University

The 1st CAS SIAM Student Chapter Annual Meeting
May 25, 2013
Outline

1. Introduction
2. Discrete Velocity Model
3. Moment Method
4. Numerical Example
5. Conclusion Remarks
Kinetic theory: Boltzmann equation

In kinetic theory, the Boltzmann equation reads:

\[
\frac{\partial f}{\partial t} + \sum_{d=1}^{D} \xi_d \frac{\partial f}{\partial x_d} = Q(f, f),
\]

(1)

where \(f(t, x, \xi) \) is the distribution function, \((t, x, \xi) \in \mathbb{R}^+ \times \mathbb{R}^D \times \mathbb{R}^D\), and \(Q(f, f) \) is the collision term with a quadratic expression typically given by

\[
Q(f, f) = \int_{\mathbb{R}^D} \int_{S^{D-1}} (f' f'_* - f f_*) |(\xi - \xi_*) \cdot n| \, d\xi_* \, dn,
\]

where \(f_* = f(\xi_*), \quad f' = f(\xi'), \quad f'_* = f(\xi'_*). \)
Maxwellian and Macroscopic Variables

Maxwellian:

\[
f_M(\xi) = \frac{1}{(2\pi\theta)^{D/2}} \exp \left(-\frac{|\xi - \mathbf{u}|^2}{2\theta} \right).
\]

The macroscopic variables:

\[
\rho = \int_{\mathbb{R}^D} f \, d\xi,
\]

\[
\rho \mathbf{u} = \int_{\mathbb{R}^D} \xi f \, d\xi,
\]

\[
\rho |\mathbf{u}|^2 + D\rho \theta = \int_{\mathbb{R}^D} |\xi|^2 f \, d\xi.
\]

For BGK model, the collision term \(Q(f, f) \) reads:

\[
Q(f, f) = \frac{1}{\tau} (f_M - f),
\]

where \(\tau \) is relaxation time.
Hierarchy of solution techniques for the Boltzmann equation

- Solution of the Boltzmann Equation
 - Analytic: Simpliest Flow Problems
 - Direct Simulation Monte Carlo Method
 - Approximate: General Flow Problems
 - Direct or particulate -flow Approches
 - Discrete Velocity Method
 - Extented Hydrodynamics Approches
 - Chapman-Enskog Expansion Technique
 - Grad-type Method of Moments
Discrete Velocity Model

Using the value on finite velocity points

\[\hat{f}_\alpha(x, t) = f(x, \xi_\alpha; t) \]

to approximate distribution function, where \(\alpha \) is a multi-dimensional index.

Examples for 1D case:
Choose the velocity points as

\[\xi_k = k \Delta \xi, \quad k = 0, \pm 1, \pm 2, \cdots, \pm (N - 1), \]

or

\[\xi_k = c_k, \quad k = 1, \cdots, N, \quad \text{satisfying} \ Hc_N(c_k) = 0, \]

etc.
Discrete Velocity Model

Using the value on finite velocity points

\[\hat{f}_\alpha(x, t) = f(x, \xi_\alpha; t) \]

to approximate distribution function, where \(\alpha \) is a multi-dimensional index.

Examples for 1D case:
Choose the velocity points as

\[\xi_k = k \Delta \xi, \quad k = 0, \pm 1, \pm 2, \cdots, \pm (N - 1), \]

or

\[\xi_k = c_k, \quad k = 1, \cdots, N, \quad \text{satisfying } H e_N (c_k) = 0, \]

etc.
Discrete Velocity Model

Using the value on finite velocity points

\[\hat{f}_\alpha(x, t) = f(x, \xi_\alpha; t) \]

to approximate distribution function, where \(\alpha \) is a multi-dimensional index.

Examples for 1D case:
Choose the velocity points as

\[\xi_k = k \Delta \xi, \quad k = 0, \pm 1, \pm 2, \ldots, \pm (N - 1), \]

or

\[\xi_k = c_k, \quad k = 1, \ldots, N, \quad \text{satisfying } He_N(c_k) = 0, \]

etc.
Discrete Velocity Model: Basic Framework

Let us consider 1D case: give a group of discrete velocity points

\[\xi_0 < \xi_1 < \cdots < \xi_{N-1} < \xi_N, \quad \xi_k \in \mathbb{R} \]

We get the system as:

\[\frac{\partial \hat{f}_k}{\partial t} + \xi_k \frac{\partial \hat{f}_k}{\partial x} = Q_k^{BGK}(f), \quad k = 0, \cdots, N, \]

where \(\hat{f}_k \) is a function of \(x \) and \(t \):

\[\hat{f}_k(x, t) \longrightarrow f(x, \xi_k; t), \]

\[Q_k^{BGK}(f) \longrightarrow Q^{BGK}(f)(\xi_k). \]
Discrete Velocity Model: Basic Framework

Discrete velocity model (DVM):

\[
\frac{\partial \hat{f}_k}{\partial t} + \xi_k \frac{\partial \hat{f}_k}{\partial x} = Q^{BGK}_k(f), \quad k = 0, \ldots, N.
\]

- Hyperbolic system: locally well-posedness;
- Wave speeds: \(\xi_k \);
- H-theorem for BGK;
- Implementation: convenient (LBM);

- Computational cost?
Discrete Velocity Model: Basic Framework

Discrete velocity model (DVM):

\[
\frac{\partial \hat{f}_k}{\partial t} + \xi_k \frac{\partial \hat{f}_k}{\partial x} = Q_k^{BGK}(f), \quad k = 0, \cdots, N.
\]

- Hyperbolic system: locally well-posedness;
- Wave speeds: ξ_k;
- H-theorem for BGK;
- Implementation: convenient (LBM);

Computational cost?
Discrete Velocity Model: Basic Framework

Computational cost: equidistant velocity points

Number of points \(\geq \frac{\sup_{x,t} |u(x, t)|}{\sqrt{\inf_{x,t} \theta(x, t)}} \)
Discrete Velocity Model: Basic Framework

Computational cost: equidistant velocity points

Number of points > $\frac{\sup_{x,t} |u(x,t)|}{\sqrt{\inf_{x,t} \theta(x,t)}}$
How to improve the efficiency of DVM?

- Best discrete velocity point?

Gauss-Hermite interpolating point: zeros of Hermite polynomials.

$$\xi_k = c_k, \text{ satisfying } He_N(c_k) = 0.$$
Discrete Velocity Model: Efficiency?

How to improve the efficiency of DVM?

- Best discrete velocity point?

 Gauss-Hermite interpolating point: zeros of Hermite polynomials.

 \[\xi_k = c_k, \quad \text{satisfying } He_N(c_k) = 0. \]
Discrete Velocity Model: Efficiency?

How to improve the efficiency of DVM?

- Best discrete velocity point?
- Adaptive configuration of the velocity points?
 - Choose the mean velocity as the center.
 \[\xi_k = c_k + u. \]
 - The higher the temperature, the greater the distance.
 Take the temperature as normalization factor.
 \[\xi_k = \sqrt{\theta} c_k + u. \]

- How many points is enough?
 Computational capacity vs Requirement.
Discrete Velocity Model: Efficiency?

How to improve the efficiency of DVM?

- Best discrete velocity point?
- Adaptive configuration of the velocity points?
 - Choose the mean velocity as the center.

 \[\xi_k = c_k + u. \]

- The higher the temperature, the greater the distance.
 Take the temperature as normalization factor.

 \[\xi_k = \sqrt{\theta} c_k + u. \]

- How many points is enough?

 Computational capacity vs Requirement.
Discrete Velocity Model: Efficiency?

How to improve the efficiency of DVM?

- Best discrete velocity point?
- Adaptive configuration of the velocity points?

Choose the mean velocity as the center.

$$\xi_k = c_k + u.$$

The higher the temperature, the greater the distance. Take the temperature as normalization factor.
Discrete Velocity Model: Efficiency?

How to improve the efficiency of DVM?

- Best discrete velocity point?
- Adaptive configuration of the velocity points?

Choose the mean velocity as the center.

\[\xi_k = c_k + u. \]

The higher the temperature, the greater the distance.

Take the temperature as normalization factor.
Discrete Velocity Model: Efficiency?

How to improve the efficiency of DVM?

- Best discrete velocity point?
- Adaptive configuration of the velocity points?
 - Choose the mean velocity as the center.

\[\xi_k = c_k + u. \]

- The higher the temperature, the greater the distance.
 - Take the temperature as normalization factor.

\[\theta = \frac{1}{2} \]

\[\theta = 2 \]
Discrete Velocity Model: Efficiency?

How to improve the efficiency of DVM?

- Best discrete velocity point?
- Adaptive configuration of the velocity points?
 - Choose the mean velocity as the center.

\[\xi_k = c_k + u. \]

- The higher the temperature, the greater the distance.

 Take the temperature as normalization factor.
Discrete Velocity Model: Efficiency?

How to improve the efficiency of DVM?

- Best discrete velocity point?
- Adaptive configuration of the velocity points?
 - Choose the mean velocity as the center.
 \[\xi_k = c_k + u. \]

- The higher the temperature, the greater the distance.
 Since the Maxwellian reads
 \[f_M = \frac{\rho}{\sqrt{2\pi\theta}} \exp\left(-\frac{|\xi - u|^2}{2\theta}\right), \]
 Take the temperature as normalization factor.
 \[\xi_k = \sqrt{\theta}c_k + u. \]

- How many points is enough?

Computational capacity vs Requirement.
Discrete Velocity Model: Efficiency?

How to improve the efficiency of DVM?

- Best discrete velocity point?
- Adaptive configuration of the velocity points?
 - Choose the mean velocity as the center.
 \[\xi_k = c_k + u. \]
 - The higher the temperature, the greater the distance.
 Take the temperature as normalization factor.
 \[\xi_k = \sqrt{\theta} c_k + u. \]
- How many points is enough?
 Computational capacity vs Requirement.
Smart Discrete Velocity Method

Let c_k, $k = 0, \ldots, M$ be the k-th zeros of $H_{e_{M+1}}$. Then we choose the interpolating points:

$$
 \xi_k = \sqrt{\theta} c_k + u,
$$

$$
 \hat{f}_k(t, x) = f(t, x, \xi_k),
$$

which satisfy the Boltzmann equation

$$
 \frac{\partial \hat{f}_k}{\partial t} + \frac{\partial \xi_k \hat{f}_k}{\partial x} = Q_k^{BGK}(f), \quad k = 0, \ldots, M.
$$

(4)

Attention: ξ_k is dependent on t and x.

Number of Degrees of Freedom?

$u, \theta, \hat{f}_k, \quad k = 0, \ldots, M.$

M+3?

Restricted condition:

$$
 \sum_{k=0}^{M} w_k \xi_k \hat{f}_k = \rho u, \quad \sum_{k=0}^{M} w_k \xi_k^2 \hat{f}_k = \rho u^2 + \rho \theta.
$$

(5)

where w_k is integral weight.
Smart Discrete Velocity Method

Let $c_k, k = 0, \ldots, M$ be the k-th zeros of $H_{e_{M+1}}$. Then we choose the interpolating points:

$$\xi_k = \sqrt{\theta}c_k + u, \quad \hat{f}_k(t, x) = f(t, x, \xi_k),$$

which satisfy the Boltzmann equation

$$\frac{\partial \hat{f}_k}{\partial t} + \frac{\partial \xi_k \hat{f}_k}{\partial x} = Q_k^{BGK}(f), \quad k = 0, \ldots, M. \quad (4)$$

Attention: ξ_k is dependent on t and x.

Number of Degrees of Freedom?

$$u, \theta, \hat{f}_k, \quad k = 0, \ldots, M.$$

M+3?

Restricted condition:

$$\sum_{k=0}^{M} w_k \xi_k \hat{f}_k = \rho u, \quad \sum_{k=0}^{M} w_k \xi_k^2 \hat{f}_k = \rho u^2 + \rho \theta. \quad (5)$$

where w_k is integral weight.
Smart Discrete Velocity Method

Let $c_k, k = 0, \ldots, M$ be the k-th zeros of He_{M+1}. Then we choose the interpolating points:

$$\xi_k = \sqrt{\theta} c_k + u, \quad \hat{f}_k(t, x) = f(t, x, \xi_k),$$

which satisfy the Boltzmann equation

$$\frac{\partial \hat{f}_k}{\partial t} + \frac{\partial \xi_k \hat{f}_k}{\partial x} = Q_k^{BGK}(f), \quad k = 0, \ldots, M. \tag{4}$$

Attention: ξ_k is dependent on t and x.

Number of Degrees of Freedom?

$$u, \theta, \hat{f}_k, \; k = 0, \ldots, M.$$

M+3?

Restricted condition:

$$\sum_{k=0}^{M} w_k \xi_k \hat{f}_k = \rho u, \quad \sum_{k=0}^{M} w_k \xi_k^2 \hat{f}_k = \rho u^2 + \rho \theta. \tag{5}$$

where w_k is integral weight.
Smart Discrete Velocity Method

Let \(c_k, k = 0, \ldots, M \) be the \(k \)-th zeros of \(He_{M+1} \). Then we choose the interpolating points:

\[
\xi_k = \sqrt{\theta} c_k + u, \quad \hat{f}_k(t, x) = f(t, x, \xi_k),
\]

which satisfy the Boltzmann equation

\[
\frac{\partial \hat{f}_k}{\partial t} + \frac{\partial \xi_k \hat{f}_k}{\partial x} = Q^{BGK}_k(f), \quad k = 0, \cdots, M. \tag{4}
\]

Attention: \(\xi_k \) is dependent on \(t \) and \(x \).

Number of Degrees of Freedom?

\[u, \theta, \hat{f}_k, k = 0, \ldots, M. \]

M+3?

Restricted condition:

\[
\sum_{k=0}^{M} w_k \xi_k \hat{f}_k = \rho u, \quad \sum_{k=0}^{M} w_k \xi_k^2 \hat{f}_k = \rho u^2 + \rho \theta. \tag{5}
\]

where \(w_k \) is integral weight.
From function values to moments

Define the moments as

$$F_k = \frac{1}{k!} \int_{\mathbb{R}} f \xi^k \, d\xi, \quad k \in \mathbb{N}. \quad (6)$$

Discrete form of the first $M + 1$ moments:

$$F_k = \frac{1}{k!} \sum_{i=0}^{M} w_i \hat{f}_i \xi_i^k, \quad k = 0, \ldots, M. \quad (7)$$

Remind: The algebraic accuracy of n-point Gauss-Hermite integral formula is $2n - 1$.

Let $\hat{f} = (\hat{f}_0, \ldots, \hat{f}_M)^T$, and $F = (F_0, \ldots, F_M)^T$, then

$$F = A \hat{f},$$

where $A = (\xi_i^k w_j / j!)$. Particularly, $F_1 = \rho u$, $F_2 = (\rho u^2 + \rho \theta) / 2$.
From function values to moments

Define the moments as

\[F_k = \frac{1}{k!} \int_{\mathbb{R}} f(x) x^k \, dx, \quad k \in \mathbb{N}. \]

(6)

Discrete form of the first \(M + 1 \) moments:

\[F_k = \frac{1}{k!} \sum_{i=0}^{M} w_i \hat{f}_i \xi_i^k, \quad k = 0, \ldots, M. \]

(7)

Remind: The algebraic accuracy of \(n \)-point Gauss-Hermite integral formula is \(2n - 1 \).

Let \(\hat{f} = (\hat{f}_0, \ldots, \hat{f}_M)^T \), and \(F = (F_0, \ldots, F_M)^T \), then

\[F = A \hat{f}, \]

where \(A = (\xi_j^i w_j / j!) \). Particularly, \(F_1 = \rho u \), \(F_2 = (\rho u^2 + \rho \theta) / 2 \).
From function values to moments

The following two sets of variables are equivalent:

\[V_M = \{ u, \theta, \hat{f}_0, \ldots, \hat{f}_M \} \iff F_M = \{ u, \theta, F_0, \ldots, F_M \} \]

Let study the set \(F_M \).

Using \(F_M \) to approximate \(f \) is equivalent to

\[\sum_{k=0}^{M} g_k \xi^k \exp\left(-\frac{|\xi - u|^2}{2\theta}\right) \to f, \]

where \(g_k, k = 0, \ldots, M \) satisfy
From function values to moments

The following two sets of variables are equivalent:

\[V_M = \{u, \theta, \hat{f}_0, \ldots, \hat{f}_M\} \iff F_M = \{u, \theta, F_0, \ldots, F_M\} \]

Let study the set \(F_M \).

Using \(F_M \) to approximate \(f \) is equivalent to

\[
\sum_{k=0}^{M} g_k \xi^k \exp\left(-\frac{|\xi - u|^2}{2\theta}\right) \rightarrow f,
\]

where \(g_k, k = 0, \ldots, M \) satisfy

\[
F = \left(\int_{\mathbb{R}} \xi^i \exp\left(-\frac{|\xi - u|^2}{2\theta}\right) d\xi \right)_{(M+1) \times (M+1)} \begin{pmatrix} g_0 \\ g_1 \\ \vdots \\ g_M \end{pmatrix}
\]
From function values to moments

The following two sets of variables are equivalent:

\[\mathcal{V}_M = \{u, \theta, \hat{f}_0, \ldots, \hat{f}_M\} \leftrightarrow \mathcal{F}_M = \{u, \theta, F_0, \ldots, F_M\} \]

Let study the set \(\mathcal{F}_M \).

Using \(\mathcal{F}_M \) to approximate \(f \) is equivalent to

\[
\sum_{k=0}^{M} g_k \xi^k \exp\left(-\left(\frac{\xi - u}{2\theta}\right)^2\right) \to f,
\]

where \(g_k \), \(k = 0, \ldots, M \) satisfy

\[
F = \left(\int_\mathbb{R} \xi^{i+j} \exp\left(-\left(\frac{\xi - u}{2\theta}\right)^2\right) d\xi\right)_{(M+1) \times (M+1)}
\]
Orthogonal polynomials

The orthogonal polynomials for the weight \(w^{[\theta]}(v) = \frac{1}{\sqrt{2\pi\theta}} \exp(-\frac{v^2}{2\theta}) \) and integration interval \(\mathbb{R} \) are **Generalized Hermite polynomials**, defined as

\[
He_k^{[\theta]}(v) = \frac{(\theta v)^k}{w^{[\theta]}(v)} \frac{d^k}{dv^k} w^{[\theta]}(v). \tag{8}
\]

- **Recurrence relations:**
 \(He_0^{[\theta]}(v) = 1, \quad He_1^{[\theta]}(v) = v/\theta, \quad \theta He_n^{[\theta]+1}(v) = vHe_n^{[\theta]}(v) - nHe_n^{[\theta]}(v); \)

- **First few terms:**
 \[
 He_0^{[\theta]}(v) = 1, \quad He_1^{[\theta]}(v) = v/\theta, \\
 He_2^{[\theta]}(v) = (v^2 - \theta)/\theta^2, \quad He_3^{[\theta]}(v) = (v^3 - 3\theta v)/\theta^3, \\
 He_4^{[\theta]}(v) = (v^4 - 6\theta v^2 + 3\theta^2)/\theta^4, \quad He_5^{[\theta]}(v) = (v^5 - 15\theta v^3 + 10\theta^2 v)/\theta^5.
 \]

- **Orthogonality:**
 \[
 \int_{\mathbb{R}} He_m^{[\theta]}(v) He_n^{[\theta]}(v) w^{[\theta]}(v) \, dv = m!\theta^m \delta_{mn}.
 \]
Orthogonal polynomials

Consider the weighted generalized Hermite polynomials

$$\mathcal{H}_{k,\theta}(v) = (-1)^k \frac{d^k}{dx^k} w^{[\theta]} = w^{[\theta]} H_k^{[\theta]}(v). \quad (9)$$

- Recursive relations: \(\theta \mathcal{H}_{n+1}^{[\theta]}(v) = v \mathcal{H}_n^{[\theta]}(v) - n \mathcal{H}_{n-1}^{[\theta]}(v) \);
- Orthogonality: \(\int_{\mathbb{R}} H_m^{[\theta]}(v) H_n^{[\theta]}(v) 1/w^{[\theta]}(v) \, dv = m!\theta^m \delta_{mn} \).
- Differential relations:

$$\frac{d \mathcal{H}_{k}^{[\theta(\tau)]}(v(\tau))}{d\tau} = -\mathcal{H}_{k+1}^{[\theta(\tau)]} \frac{dv(\tau)}{d\tau} + \frac{1}{2} \mathcal{H}_{k+1}^{[\theta(\tau)]} \frac{d\theta(\tau)}{d\tau}. $$
Moments

Consider

\[f_{h,M} = \sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \rightarrow f, \]

where

\[f_k = \frac{\theta^k}{k!} \int_{\mathbb{R}} f \mathcal{H}_k^{[\theta]}(\xi - u) \frac{1}{w^{[\theta]}(\xi - u)} \, d\xi. \]

\(\hat{f}_k \) and \(f_k \) are related with the Hermite transformation.

Restricted condition:

\[f_1 = 0, \quad f_2 = 0. \]
Moments

Consider

\[f_{h,M} = \sum_{k=0}^{M} f_k H_k^\theta(\xi - u) \rightarrow f, \]

where

\[f_k = \frac{\theta^k}{k!} \int_{\mathbb{R}} f H_k^\theta(\xi - u) \frac{1}{w[\theta](\xi - u)} \, d\xi. \]

The relation of \(\hat{f}_k \) and \(f_k \)?

\[\hat{f}_k = f_{h,M}(\xi_k) = \sum_{k=0}^{M} f_k H_k^\theta(\xi_k - u). \]

\(\hat{f}_k \) and \(f_k \) are related with the Hermite transformation.

Restricted condition:

\[f_1 = 0, \quad f_2 = 0. \]
Moments

Consider

\[f_{h,M} = \sum_{k=0}^{M} f_k \mathcal{H}_k^\theta (\xi - u) \rightarrow f, \]

where

\[f_k = \frac{\theta^k}{k!} \int_{\mathbb{R}} f \mathcal{H}_k^\theta (\xi - u) \frac{1}{\omega^\theta (\xi - u)} \, d\xi. \]

The relation of \(\hat{f}_k \) and \(f_k \)?

\[\hat{f}_k = f_{h,M}(\xi_k) = \sum_{k=0}^{M} f_k \mathcal{H}_k^\theta (\xi_k - u). \]

\(\hat{f}_k \) and \(f_k \) are related with the Hermite transformation.

Restricted condition:

\[f_1 = f_3 = \ldots = f_{2n-1} = 0. \]
Moments
Consider
\[f_{h,M} = \sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \rightarrow f, \]
where
\[f_k = \frac{\theta^k}{k!} \int_{\mathbb{R}} f \mathcal{H}_k^{[\theta]}(\xi - u) \frac{1}{w^{[\theta]}(\xi - u)} \, d\xi. \]
\(\hat{f}_k \) and \(f_k \) are related with the Hermite transformation.

Hermitian transformation between \(\hat{f}_k(x, t) \) and \(f_k(x, t) \):
\[
\begin{bmatrix}
\hat{f}_0 \\
\hat{f}_1 \\
\vdots \\
\hat{f}_M
\end{bmatrix} =
\begin{bmatrix}
\mathcal{H}_0^{[\theta]}(\sqrt{\theta}c_0) & \mathcal{H}_1^{[\theta]}(\sqrt{\theta}c_0) & \cdots & \mathcal{H}_M^{[\theta]}(\sqrt{\theta}c_0) \\
\mathcal{H}_0^{[\theta]}(\sqrt{\theta}c_1) & \mathcal{H}_1^{[\theta]}(\sqrt{\theta}c_1) & \cdots & \mathcal{H}_M^{[\theta]}(\sqrt{\theta}c_1) \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{H}_0^{[\theta]}(\sqrt{\theta}c_M) & \mathcal{H}_1^{[\theta]}(\sqrt{\theta}c_M) & \cdots & \mathcal{H}_M^{[\theta]}(\sqrt{\theta}c_M)
\end{bmatrix}
\begin{bmatrix}
f_0 \\
f_1 \\
\vdots \\
f_M
\end{bmatrix}.\]

Restricted condition:
\[f_1 = 0, \quad f_2 = 0. \]
Moments

Consider

\[f_{h,M} = \sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \rightarrow f, \]

where

\[f_k = \frac{\theta^k}{k!} \int_{\mathbb{R}} f \mathcal{H}_k^{[\theta]}(\xi - u) \frac{1}{w^{[\theta]}(\xi - u)} \, d\xi. \]

\(\hat{f}_k \) and \(f_k \) are related with the Hermite transformation.

Restricted condition:

\[f_1 = 0, \quad f_2 = 0. \]
Revelation from DVM

- Hyperbolic system: ??
- Wave speeds: $\xi_k = u + \sqrt{\theta} c_k$??
- H-theorem for BGK ??
Revelation from DVM

- Hyperbolic system: ??
- Wave speeds: $\xi_k = u + \sqrt{\theta} c_k$??
- H-theorem for BGK ??
Revelation from DVM

- Hyperbolic system: ??
- Wave speeds: $\xi_k = u + \sqrt{\theta} c_k$??
- H-theorem for BGK ??
Evolution Equation

Let us go back to the Hermite expansion:

\[
f_{h,M}(t, x, \xi) = \sum_{k=0}^{M} f_k(x, t) \mathcal{H}_k^{[\theta]}(\xi - u). \tag{10}
\]

The 1D Boltzmann equation reads:

\[
\frac{\partial f}{\partial t} + \xi \frac{\partial f}{\partial x} = \frac{1}{\tau}(f_M - f). \tag{11}
\]

Particularly,

\[f_M = f_0 \mathcal{H}_0^{[\theta]}(\xi - u), \quad f_0 = \rho, \quad f_1 = f_2 = 0, \quad f_3 = q/3 \text{ heat flux.}\]

Substitute (10) into (11)?
Evolution Equation

Let us go back to the Hermite expansion:

\[f_{h,M}(t, x, \xi) = \sum_{k=0}^{M} f_k(x, t) \mathcal{H}_k^{[\theta]}(\xi - u). \] (10)

The 1D Boltzmann equation reads:

\[\frac{\partial f}{\partial t} + \xi \frac{\partial f}{\partial x} = \frac{1}{\tau} (f_M - f). \] (11)

Particularly,

\[f_M = f_0 \mathcal{H}_0^{[\theta]}(\xi - u), \quad f_0 = \rho, \quad f_1 = f_2 = 0, \quad f_3 = q/3 \text{ heat flux}. \]

Substitute (10) into (11)?
Evolution Equation

Let us go back to the Hermite expansion:

\[f_{h,M}(t, x, \xi) = \sum_{k=0}^{M} f_k(x, t) \mathcal{H}_k^{[\theta]}(\xi - u). \] (10)

The 1D Boltzmann equation reads:

\[\frac{\partial f}{\partial t} + \xi \frac{\partial f}{\partial x} = \frac{1}{\tau} (f_M - f). \] (11)

Particularly,

\[f_M = f_0 \mathcal{H}_0^{[\theta]}(\xi - u), \quad f_0 = \rho, \quad f_1 = f_2 = 0, \quad f_3 = q/3 \text{ heat flux.} \]

Substitute (10) into (11)?
Evolution Equation

Let us go back to the Hermite expansion:

$$f_{h,M}(t, x, \xi) = \sum_{k=0}^{M} f_k(x, t) \mathcal{H}_k^{[\theta]} (\xi - u).$$ \hspace{1cm} (10)

The 1D Boltzmann equation reads:

$$\frac{\partial f}{\partial t} + \xi \frac{\partial f}{\partial x} = \frac{1}{\tau} (f_M - f).$$ \hspace{1cm} (11)

Particularly,

$$f_M = f_0 \mathcal{H}_0^{[\theta]} (\xi - u), \quad f_0 = \rho, \quad f_1 = f_2 = 0, \quad f_3 = q/3 \text{ heat flux.}$$

Substitute (10) into (11)?
Grad’s Moment System

Substitute (10) into (11),

\[
\frac{\partial}{\partial t} \left(\sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \right) + \xi \frac{\partial}{\partial x} \left(\sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \right) = -\frac{1}{\tau} \sum_{k=3}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi-u).
\]

and make a directly expansion to have

\[
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0, \tag{12a}
\]

\[
\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial x} + \rho u \frac{\partial u}{\partial x} = 0, \tag{12b}
\]

\[
\frac{1}{2} \rho \frac{\partial \theta}{\partial t} + \frac{1}{2} \rho u \frac{\partial \theta}{\partial x} + \frac{\partial q}{\partial x} + p \frac{\partial u}{\partial x} = 0, \tag{12c}
\]

\[
\frac{\partial f_k}{\partial t} - f_{k-1} \frac{\theta}{\rho} \frac{\partial \rho}{\partial x} + (k+1) f_k \frac{\partial u}{\partial x} + \left(\frac{1}{2} \theta f_{k-3} + \frac{k-1}{2} f_{k-1} \right) \frac{\partial \theta}{\partial x} - \frac{3}{\rho} \frac{\partial f_{k-2}}{\partial x} + \theta \frac{\partial f_{k-1}}{\partial x} + u \frac{\partial f_k}{\partial x} + (k+1) \frac{\partial f_{k+1}}{\partial x} = -\frac{1}{\tau} f_k, \quad \text{for } k \geq 3,
\]

where \(p = \rho \theta, q = 3 f_3 \).
Grad’s Moment System

Substitute (10) into (11),

\[
\frac{\partial}{\partial t} \left(\sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \right) + \xi \frac{\partial}{\partial x} \left(\sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \right) = -\frac{1}{\tau} \sum_{k=3}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u).
\]

Recursive relation:
\[\theta \mathcal{H}_{n+1}^{[\theta]}(v) = v \mathcal{H}_n^{[\theta]}(v) - n \mathcal{H}_{n-1}^{[\theta]}(v); \]

Differential relation:
\[\frac{d \mathcal{H}_k^{[\theta(\tau)]}(v(\tau))}{d\tau} = -\mathcal{H}_k^{[\theta(\tau)]} \frac{dv(\tau)}{d\tau} + \frac{1}{2} \mathcal{H}_k^{[\theta(\tau)]} \frac{d\theta(\tau)}{d\tau}. \]

and make a directly expansion to have

\[
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0,
\]
\[(12a) \]
\[
\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial x} + \rho u \frac{\partial u}{\partial x} = 0,
\]
\[(12b) \]
\[
\frac{1}{2} \rho \frac{\partial \theta}{\partial t} + \frac{1}{2} \rho u \frac{\partial \theta}{\partial x} + \frac{\partial q}{\partial x} + p \frac{\partial u}{\partial x} = 0,
\]
\[(12c) \]
Grad’s Moment System

Substitute (10) into (11),

$$\frac{\partial}{\partial t} \left(\sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \right) + \xi \frac{\partial}{\partial x} \left(\sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \right) = -\frac{1}{\tau} \sum_{k=3}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u).$$

and make a directly expansion to have

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0,$$

(12a)

$$\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial x} + \rho u \frac{\partial u}{\partial x} = 0,$$

(12b)

$$\frac{1}{2} \frac{\partial \theta}{\partial t} + \frac{1}{2} \frac{\partial \theta}{\partial x} + \frac{\partial q}{\partial x} + p \frac{\partial u}{\partial x} = 0,$$

(12c)

$$\frac{\partial f_k}{\partial t} - f_{k-1} \frac{\theta}{\rho} \frac{\partial \rho}{\partial x} + (k+1)f_k \frac{\partial u}{\partial x} + \left(\frac{1}{2} \theta f_{k-3} + \frac{k-1}{2} f_{k-1} \right) \frac{\partial \theta}{\partial x},$$

$$- \frac{3}{\rho} f_{k-2} \frac{\partial f_3}{\partial x} + \theta \frac{\partial f_{k-1}}{\partial x} + u \frac{\partial f_k}{\partial x} + (k+1) \frac{\partial f_{k+1}}{\partial x} = -\frac{1}{\tau} f_k,$$

for $k \geq 3$,

where $p = \rho \theta$, $q = 3f_3$.
Grad’s Moment System

Substitute (10) into (11),

\[
\frac{\partial}{\partial t} \left(\sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \right) + \xi \frac{\partial}{\partial x} \left(\sum_{k=0}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u) \right) = - \frac{1}{\tau} \sum_{k=3}^{M} f_k \mathcal{H}_k^{[\theta]}(\xi - u).
\]

and make a directly expansion to have

\[
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0, \tag{12a}
\]

\[
\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial x} + \rho u \frac{\partial u}{\partial x} = 0, \tag{12b}
\]

\[
\frac{1}{2} \rho \frac{\partial \theta}{\partial t} + \frac{1}{2} \rho \theta \frac{\partial \theta}{\partial x} + \frac{\partial q}{\partial x} + p \frac{\partial u}{\partial x} = 0, \tag{12c}
\]

\[
\frac{\partial f_k}{\partial t} - f_{k-1} \frac{\theta}{\rho} \frac{\partial \rho}{\partial x} + (k + 1) f_k \frac{\partial u}{\partial x} + \left(\frac{1}{2} \theta f_{k-3} + \frac{k - 1}{2} f_{k-1} \right) \frac{\partial \theta}{\partial x} - \frac{3}{\rho} f_{k-2} \frac{\partial f_3}{\partial x} + \theta \frac{\partial f_{k-1}}{\partial x} + u \frac{\partial f_k}{\partial x} + (k + 1) \frac{\partial f_{k+1}}{\partial x} = - \frac{1}{\tau} f_k, \quad \text{for } k \geq 3,
\]

where \(p = \rho \theta, q = 3 f_3 \).
The Moment System

In quasi-linear formation: let \(w_M = (\rho, u, \theta, f_3, \cdots, f_M)^T \in \mathbb{R}^{M+1} \), \(M \in \mathbb{N} \) and \(M \geq 2 \), \(f_{M+1} = 0 \)

\[
\frac{\partial w_M}{\partial t} + A_M \frac{\partial w_M}{\partial x} = Qw, \tag{13}
\]

where \(A_M \) is a lower Hessenberg matrix as

\[
\begin{pmatrix}
 u & 0 & 0 & \cdots & 0 \\
 \theta/\rho & u & 0 & \cdots & 0 \\
 0 & 2\theta & u & \cdots & 0 \\
 0 & 4f_3 & \rho\theta/2 & \cdots & 0 \\
 -\theta f_3/\rho & 5f_4 & 3f_3/2 & \cdots & 0 \\
 \cdots & \cdots & \cdots & \cdots & \cdots \\
 -\theta f_M-2/\rho & Mf_M-1 & \frac{1}{2}[(M-2)f_{M-2} + \theta f_{M-4}] & \cdots & 0 \\
 -\theta f_M-1/\rho & (M+1)f_M & \frac{1}{2}[(M-1)f_{M-1} + \theta f_{M-3}] & \cdots & 0 \\
 \end{pmatrix}
\]

Question:

- Is the system (13) hyperbolic? \(\iff A_M \) is diagonalizable with real eigenvalues?
- Are \(u + c_k\sqrt{\theta} \), \(k = 0, \cdots, M \), the eigenvalues of \(A_M \)? \(\iff \) The eigenvalues of \(A_M \) are zeros of \(He_M^{[\theta]}(u - u) \)?
The Moment System

In quasi-linear formation: let \(\mathbf{w}_M = (\rho, u, \theta, f_3, \cdots, f_M)^T \in \mathbb{R}^{M+1}, \) \(M \in \mathbb{N} \) and \(M \geq 2, \) \(f_{M+1} = 0 \)

\[
\frac{\partial \mathbf{w}_M}{\partial t} + \mathbf{A}_M \frac{\partial \mathbf{w}_M}{\partial x} = \mathbf{Qw},
\]

(13)

where \(\mathbf{A}_M \) is a lower Hessenberg matrix as

\[
\begin{pmatrix}
 u & \rho & 0 & \cdots & 0 \\
 \theta / \rho & u & 2\theta & \cdots & 0 \\
 0 & 4f_3 & u & \cdots & 0 \\
 0 & 5f_4 & \rho \theta / 2 & \cdots & 0 \\
 -\theta f_3 / \rho & \cdots & \cdots & \cdots & \cdots \\
 -\theta f_{M-2} / \rho & \cdots & \cdots & \cdots & \cdots \\
 -\theta f_{M-1} / \rho & \cdots & \cdots & \cdots & \cdots \\
 \cdots & \cdots & \! (M+1)f_M & \cdots & \cdots \\
 \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{pmatrix}
\]

Question:

- Is the system (13) hyperbolic? \(\iff \mathbf{A}_M \) is diagonalizable with real eigenvalues?
- Are \(u + c_k \sqrt{\theta}, \) \(k = 0, \cdots, M, \) the eigenvalues of \(\mathbf{A}_M? \) \(\iff \) The eigenvalues of \(\mathbf{A}_M \) are zeros of \(\mathcal{H}_{M+1}^{[\theta]}(u - u) \)?
The Moment System

In quasi-linear formation: let \(\mathbf{w}_M = (\rho, u, \theta, f_3, \cdots, f_M)^T \in \mathbb{R}^{M+1} \), \(M \in \mathbb{N} \) and \(M \geq 2 \), \(f_{M+1} = 0 \)

\[
\frac{\partial \mathbf{w}_M}{\partial t} + \mathbf{A}_M \frac{\partial \mathbf{w}_M}{\partial x} = \mathbf{Qw}, \tag{13}
\]

where \(\mathbf{A}_M \) is a lower Hessenberg matrix as

\[
\begin{pmatrix}
 u & \rho & 0 & \cdots & 0 \\
 \theta / \rho & u & \rho \theta / 2 & \cdots & 0 \\
 0 & 2\theta & u & \cdots & 0 \\
 0 & 4f_3 & 3f_3/2 & \cdots & 0 \\
 -\theta f_3 / \rho & 5f_4 & \cdots & \cdots & 0 \\
 -\theta f_{M-2} / \rho & Mf_{M-1} & \frac{1}{2}[(M-2)f_{M-2} + \theta f_{M-4}] & \cdots & 0 \\
 -\theta f_{M-1} / \rho & (M+1)f_M & \frac{1}{2}[(M-1)f_{M-1} + \theta f_{M-3}] & \cdots & 0 \\
 \end{pmatrix}
\]

Question:

- Is the system (13) hyperbolic? \(\iff \mathbf{A}_M \) is diagonalizable with real eigenvalues?
- Are \(u + c_k\sqrt{\theta} \), \(k = 0, \cdots, M \), the eigenvalues of \(\mathbf{A}_M \)? \(\iff \) The eigenvalues of \(\mathbf{A}_M \) are zeros of \(H_{\theta}^{[\theta]}(\rho - u) \)?
The Moment System

Theorem 1

The characteristic polynomial of A_M is

$$He_M^{[\theta]} (\lambda - u)$$

$$- \frac{(M + 1)!}{2 \rho} \left[\left((\lambda - u)^2 - \theta \right) f_{M-1} + 2(\lambda - u) f_M \right].$$
The Moment System

Theorem 1
The characteristic polynomial of A_M is

$$He_{M+1}^{[\theta]} (\lambda - u)$$

$$-\frac{(M + 1)!}{2\rho} \left[((\lambda - u)^2 - \theta) f_{M-1} + 2(\lambda - u)f_M \right].$$
Regularization of Moment System

We raised the following problem:

Find \(M + 1 \) functions \(a_j = a_j(w_M), j = 0, \cdots, M, \) such that

\[
\begin{align*}
\lambda I - A_M - \sum_{j=0}^{M} a_j E_{M+1,j} &= H e^{[\theta]}_{M+1} (\lambda - w) \\

\end{align*}
\]

where \(E_{ij} \) is a \((M + 1) \times (M + 1)\) matrix, with only the \((i, j)\)-th entry nonzero, and equals to 1.

The answer of this problem is unique as:

\[
\begin{align*}
a_1 &= 0, \\
a_2 &= -(M + 1) f_M, \\
a_3 &= -\frac{M + 1}{2} f_{M-1}. \quad (14) \\

a_j &\equiv 0, \quad j = 4, \cdots, M + 1, \quad (15)
\end{align*}
\]
Regularization of Moment System

We raised the following problem:

Find $M + 1$ functions $a_j = a_j(w_M)$, $j = 0, \cdots, M$, such that

$$\lambda I - A_M - \sum_{j=0}^{M} a_j E_{M+1,j} = He_{M+1}^{(0)} (\lambda - w)$$

where E_{ij} is a $(M+1) \times (M+1)$ matrix, with only the (i, j)-th entry nonzero, and equals to 1.

The answer of this problem is unique as:

$$a_1 = 0, \quad a_2 = -(M + 1)f_M, \quad a_3 = -\frac{M + 1}{2}f_{M-1}. \quad (14)$$

$$a_j \equiv 0, \quad j = 4, \cdots, M + 1, \quad (15)$$
Regularization of Moment System

Definition 2
The regularization term based on the characteristic speed correction is denoted as
\[
R_M \triangleq \frac{M + 1}{2} \left(2 f_M \frac{\partial u}{\partial x} + f_{M-1} \frac{\partial \theta}{\partial x} \right).
\] (16)

Theorem 3
The moment system
\[
\frac{\partial w_M}{\partial t} + \hat{A}_M \frac{\partial w_M}{\partial x} = 0, \quad \hat{A}_M \frac{\partial w_M}{\partial x} = A_M \frac{\partial w_M}{\partial x} - R_M e_{M+1}
\] (17)

is strictly hyperbolic if \(\theta > 0 \), and its characteristic speeds are
\[
\xi_j = u + c_j \sqrt{\theta}, \quad j = 1, \ldots, M + 1.
\] (18)
Regularization of Moment System

Definition 2

The regularization term based on the characteristic speed correction is denoted as

\[R_M \triangleq \frac{M + 1}{2} \left(2f_M \frac{\partial u}{\partial x} + f_{M-1} \frac{\partial \theta}{\partial x} \right). \]

(16)

Theorem 3

The moment system

\[\frac{\partial \mathbf{w}_M}{\partial t} + \hat{A}_M \frac{\partial \mathbf{w}_M}{\partial x} = 0, \quad \hat{A}_M \frac{\partial \mathbf{w}_M}{\partial x} = A_M \frac{\partial \mathbf{w}_M}{\partial x} - R_M e_{M+1} \]

(17)

is strictly hyperbolic if \(\theta > 0 \), and its characteristic speeds are

\[\xi_j = u + c_j \sqrt{\theta}, \quad j = 1, \ldots, M + 1. \]

(18)
Regularization of Moment System

\[
\frac{\partial f_M}{\partial t} - f_{M-1} \frac{\theta}{\rho} \frac{\partial \rho}{\partial x} + (M + 1) f_M \frac{\partial u}{\partial x} + \left(\frac{1}{2} \theta f_{M-3} + \frac{M - 1}{2} f_{M-1} \right) \frac{\partial \theta}{\partial x} - \frac{3}{\rho} f_{M-2} \frac{\partial f_3}{\partial x} + \theta \frac{\partial f_{M-1}}{\partial x} + u \frac{\partial f_M}{\partial x} + (M + 1) \frac{\partial f_{M+1}}{\partial x} = 0
\]

The regularization makes

\[
\frac{\partial f_{M+1}}{\partial x} = -f_M \frac{\partial u}{\partial x} - \frac{1}{2} f_{M-1} \frac{\partial \theta}{\partial x}.
\]

A nonlocal state equation!

Let us recall the Euler equations for ideal gas (Gamma law)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} &= 0, \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} &= 0,
\end{align*}
\]
Regularization of Moment System

\[
\frac{\partial f_M}{\partial t} - f_{M-1} \frac{\theta}{\rho} \frac{\partial \rho}{\partial x} + (M + 1) f_M \frac{\partial u}{\partial x} + \left(\frac{1}{2} \theta f_M - 3 + \frac{M - 1}{2} f_{M-1} \right) \frac{\partial \theta}{\partial x} \\
- \frac{3}{\rho} f_{M-2} \frac{\partial f_3}{\partial x} + \theta \frac{\partial f_{M-1}}{\partial x} + u \frac{\partial f_M}{\partial x} + (M + 1) \frac{\partial f_{M+1}}{\partial x} = 0
\]

The regularization makes

\[
\frac{\partial f_{M+1}}{\partial x} = -f_M \frac{\partial u}{\partial x} - \frac{1}{2} f_{M-1} \frac{\partial \theta}{\partial x}.
\]

(19)

A nonlocal state equation!

Let us recall the Euler equations for ideal gas (Gamma law)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} &= 0, \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} &= 0, \\
\frac{\partial s}{\partial t} + u \frac{\partial s}{\partial x} &= 0.
\end{align*}
\]
Regularization of Moment System

The regularization makes

\[
\frac{\partial f_{M+1}}{\partial x} = -f_M \frac{\partial u}{\partial x} - \frac{1}{2} f_{M-1} \frac{\partial \theta}{\partial x}. \tag{19}
\]

The distribution function

\[
f_h(x, \xi; t) = \sum_{k=0}^{M} f_k(x, t) \mathcal{H}_{\theta, k}(v)
\]

should be revised to

\[
\sum_{k=0}^{M} f_k(x, t) \mathcal{H}_{\theta, k}(v) - f_{M+1}(x, t) \mathcal{H}_{\theta, M+1}(v)
\]

where \(f_{M+1}(x, t)\) satisfied (19).

A nonlocal state equation!

Let us recall the Euler equations for ideal gas (Gamma law)

\[
\begin{align*}
\partial_t u + u \partial_x u + \frac{1}{\gamma} \partial_x p &= 0, \\
\partial_t \rho + \partial_x (\rho u) &= 0, \\
\partial_t s + \partial_x (\rho u s) &= 0,
\end{align*}
\]
Regularization of Moment System

The regularization makes

\[
\frac{\partial f_{M+1}}{\partial x} = -f_M \frac{\partial u}{\partial x} - \frac{1}{2} f_{M-1} \frac{\partial \theta}{\partial x}.
\] (19)

A nonlocal state equation!

Let us recall the Euler equations for ideal gas (Gamma law)

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} &= 0, \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} &= 0, \\
\frac{\partial s}{\partial t} + u \frac{\partial s}{\partial x} &= 0,
\end{align*}
\]

with the state equation giving the pressure as

\[p = \rho^\gamma \exp(s), \quad s \text{ is the entropy.} \]
Regularization of Moment System

The regularization makes

$$\frac{\partial f_{M+1}}{\partial x} = -f_M \frac{\partial u}{\partial x} - \frac{1}{2} f_{M-1} \frac{\partial \theta}{\partial x}. \tag{19}$$

A nonlocal state equation!

Let us recall the Euler equations for ideal gas (Gamma law)

$$\begin{aligned}
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} &= 0, \\
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} &= 0, \\
\frac{\partial s}{\partial t} + u \frac{\partial s}{\partial x} &= 0,
\end{aligned}$$

with the state equation giving the pressure as

$$p = \rho^\gamma \exp(s), \quad s \text{ is the entropy.}$$
Characteristic wave

Theorem 4

The right eigenvector of A_M with eigenvalue $u + c_j \sqrt{\theta}$ is

$$r_j = (r_{j,1}, \cdots, r_{j,M+1})^T, \quad j = 1, \cdots, M + 1,$$

(20)

where $r_{j,k}$ is defined as

$$r_{j,1} = \rho, \quad r_{j,2} = c_j \sqrt{\theta}, \quad r_{j,3} = (c_j^2 - 1)\theta,$$

$$r_{j,k} = \frac{He_{k-1}(c_j)}{(k - 1)!} \rho \theta^{\frac{k-1}{2}} - \frac{c_j^2 - 1}{2} \theta f_{k-3} - c_j \sqrt{\theta} f_{k-2}, \quad k = 4, \cdots, M + 1.$$

Corollary 5

Each characteristic field of the hyperbolic system (17) is either genuinely nonlinear or linearly degenerate.
Characteristic wave

Theorem 4
The right eigenvector of A_M with eigenvalue $u + c_j \sqrt{\theta}$ is

$$r_j = (r_{j,1}, \cdots, r_{j,M+1})^T, \quad j = 1, \cdots, M + 1,$$

(20)

where $r_{j,k}$ is defined as

$$r_{j,1} = \rho, \quad r_{j,2} = c_j \sqrt{\theta}, \quad r_{j,3} = (c_j^2 - 1)\theta,$$

$$r_{j,k} = \frac{He_{k-1}(c_j)}{(k-1)!} \frac{c_j^2 - 1}{2} \theta f_{k-3} - c_j \sqrt{\theta} f_{k-2}, \quad k = 4, \cdots, M + 1.$$

Corollary 5
Each characteristic field of the hyperbolic system (17) is either genuinely nonlinear or linearly degenerate.
Characteristic wave

Theorem 6

The Riemann invariants for the \(j \)-family for system (17) are

\[
R_1 = \rho \theta^{-1/(c_j^2-1)}, \quad R_2 = u - \frac{2c_j}{c_j^2 - 1} \sqrt{\theta},
\]

\[
R_k = C_{k,0} \rho \theta^{k/2} + \sum_{i=3}^{k} C_{k,i} f_i \theta^{(k-i)/2}, \quad k = 3, \ldots, M. \tag{21}
\]

\[
C_{k,k} = 1, \quad C_{k,k-1} = \frac{2c_j}{c_j^2 - 1}, \quad C_{k,0} = \frac{2}{(1-c_j^2)k-2} \sum_{i=3}^{k} \frac{He_i(c_j)}{i!} C_{k,i},
\]

\[
C_{k,i} = \frac{1}{k-i} \left(C_{k,i+2} + C_{k,i+1} \frac{2c_j}{c_j^2 - 1} \right), \quad i = 3, \ldots, k-2.
\]
Characteristic wave

Theorem 7

For hyperbolic moment system (17), the type of wave of the j-th family can be determined by the value of c_j and the macroscopic velocities or pressures on both sides of the wave:

<table>
<thead>
<tr>
<th>Type of Wave</th>
<th>Velocity Condition</th>
<th>Pressure Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact discontinuity</td>
<td>$c_j = 0, u^L = u^R$</td>
<td>$c_j = 0, p^L = p^R$</td>
</tr>
<tr>
<td>Rarefaction wave</td>
<td>$c_j \neq 0, u^L < u^R$</td>
<td>$c_j > 0, p^L < p^R$; $c_j < 0, p^L > p^R$</td>
</tr>
<tr>
<td>Shock wave</td>
<td>$c_j \neq 0, u^L > u^R$</td>
<td>$c_j > 0, p^L > p^R$; $c_j < 0, p^L < p^R$</td>
</tr>
</tbody>
</table>
Classical DVM in the Moment Method point of view

We define generalized “moment”s as

\[f_k(x, t) \triangleq \int_{\mathbb{R}} f(x, \xi; t) \psi_k^k(\xi) \, d\xi \]

where \(\xi_{k+1/2} = (\xi_k + \xi_{k+1})/2 \) and

\[\psi_k^k(\xi) = \begin{cases}
1, & \xi \in [\xi_{k-1/2}, \xi_{k+1/2}], \\
0, & \text{otherwise}.
\end{cases} \]

Then

\[f_h(x, \xi; t) = \sum_{k=0}^{N} f_k(x, t) \psi_k^k(\xi), \]

and the discrete velocity model is recovered as the system of the “moment”s \(f_k \)

\[\frac{\partial f_k}{\partial t} + \xi_k \frac{\partial f_k}{\partial x} = Q_k(f_h, f_h). \]
Classical DVM in the Moment Method point of view

We define generalized “moment”s as

$$f_k(x, t) \triangleq \int_{\mathbb{R}} f(x, \xi; t) \psi^k(\xi) \, d\xi$$

where $$\xi_{k+1/2} = (\xi_k + \xi_{k+1})/2$$ and

$$\psi^k(\xi) = \begin{cases} 1, & \xi \in [\xi_{k-1/2}, \xi_{k+1/2}], \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$f_h(x, \xi; t) = \sum_{k=0}^{N} f_k(x, t) \psi^k(\xi),$$

and the discrete velocity model is recovered as the system of the “moment”s $$f_k$$

$$\frac{\partial f_k}{\partial t} + \xi_k \frac{\partial f_k}{\partial x} = Q_k(f_h, f_h).$$
Cavity Flow

- Monatomic gas: argon (with mass $m = 6.63 \times 10^{-26}$ kg).
- $U_w = 50 \text{m/s}$, and $T_{wall} = T_0 = 273K$.
- Shakhov collision model is used, and relaxation time:
 \[\tau = \sqrt{\frac{2}{\pi}} \frac{Kn}{\theta \omega}, \quad w = 0.81. \]
- 200 \times 200 grid points for spatial discretization.
- Different Knudsen number Kn is studied.
Cavity Flow with $Kn = 0.1$

Figure 1: Cavity at $Kn = 0.1$. (a) Temperature $T = \theta T_0$ contours with $M = 20$, black lines: DSMC, white lines and background: MM. (b) Heat flux with $M = 20$, red dash-dot line: DSMC, blue line: MM.
Cavity Flow with $Kn = 0.5$

Figure 2: Cavity at $Kn = 0.5$. (a) Temperature $T = \theta T_0$ contours with $M = 25$, black lines: DSMC, white lines and background: MM. (b) Heat flux with $M = 25$, red dash-dot line: DSMC, blue line: MM.
Cavity Flow with $Kn = 1$

Figure 3: Cavity at $Kn = 1$. (a) Temperature $T = \theta T_0$ contours with $M = 25$, black lines: DSMC, white lines and background: MM. (b) Heat flux with $M = 25$, red dash-dot line: DSMC, blue line: MM.
Cavity Flow with $Kn = 8$

Figure 4: Cavity at $Kn = 8$. (a) Temperature $T = \theta T_0$ contours with $M = 35$, black lines: DSMC, white lines and background: MM. (b) Heat flux with $M = 35$, red dash-dot line: DSMC, blue line: MM.
Conclusion Remarks

- The moment method is actually a discrete velocity model with adaptive velocity points;

- Appropriate closure has to be made to achieve the globally hyperbolicity, thus local well-posedness;

- The moment method may have an improved efficiency in the approximation since it is a spectral expansion.
Conclusion Remarks

- The moment method is actually a discrete velocity model with adaptive velocity points;

- Appropriate closure has to be made to achieve the globally hyperbolicity, thus local well-posedness;

- The moment method may have an improved efficiency in the approximation since it is a spectral expansion.
Conclusion Remarks

- The moment method is actually a discrete velocity model with adaptive velocity points;

- Appropriate closure has to be made to achieve the globally hyperbolicity, thus local well-posedness;

- The moment method may have an improved efficiency in the approximation since it is a spectral expansion.
Thank You

Email: ywfan@pku.edu.cn
Website: http://dsec.pku.edu.cn/~ywfan

Reference:

1 1D result: Z.-N. Cai, Y.-W. Fan and R. Li, Globally Hyperbolic Regularization of Grad’s Moment System in One Dimensional Space, Communications in Math Sciences, 11(2), 2012, pp. 547-571.

2 nD result: Z.-N. Cai, Y.-W. Fan and R. Li, Globally Hyperbolic Regularization of Grad’s Moment System, Accepted by Communications on Pure and Applied Mathematics.